CUBIT 11.0 User Documentation

Table Of Contents

CUBIT 11.0 User Documentation

Introduction

Key Features

Geometry Creation, Modification, and Healing
Non-Manifold Topology

Geometry Decomposition

Mesh Generation

Boundary Conditions

Element Types

Graphics Display Capabilities

Graphical User Interface

Command Line Interface

How to Use This Manual

NNDMNNNDNMNNDNDERE PP

Licensing, Distribution and Installation

Hardware Requirements

Trademark Notice

CUBIT Mailing Lists

Problem Reports and Enhancement Requests

Environment Control

Session Control

Starting and Exiting a CUBIT Session

Starting the Session
Windows File Association
Exiting the Session
Resetting the Session
Abort Handling

Execution Command Syntax

o o o1 ono;g

Initialization Files

Environment Variables

Command Syntax

Command Line Help

Environment Commands

Working Directory

11

11
11

Table Of Contents

File Manipulation 11
CPU Time 12
Comment 12
History 12
Error Logging 12
Determining the CUBIT Version 12
Echoing Commands 13
Digits Displayed 13
Saving and Restoring a Cubit Session 13
CUBIT File Method 13
New 14
Open '<filename>' 14
Save 14
Import 14
Export 14
Interrupting Running Tasks 15
Graphical User Interface 15
CUBIT Application Window 15
Context Sensitive Help in the GUI 16
Customizing the Application Window 16
Interrupting Running Tasks 19
Command Panels 19
Command Panel Functionality 20
ID Input Entry Methods 21
Right-Click Context Menu for ID Input Fields 22
Value Fields 23
Advancing Pickwidgets 23
Command Panel Overview 23
Graphics Window 30
View Navigation in the GUI 31
Rotations 32
Zooming 33
Panning 34
Selecting Entities in the GUI 35
Pre-Selection 36
Polygon and Box Select 36
Key Press Commands for the GUI 36
Right Click Commands for the GUI Graphics Window 37
With Entity Selected 37
Without Entity Selected 37

CUBIT 11.0 User Documentation

Repositioning Nodes in the GUI

Power Tools

Geometry Tree

Drag and Drop
Picked Group
Right-Click Menu Functions

Geometry Power Tools

Geometry Analysis Tools
Geometry Repair Tools
Right Click Menu

Meshing Tools

Right Click Context Menu

Mesh Quality Tools

Mesh Quality Tool Buttons
Right-Click Context Menu Items

Property Editor

Editing Entity Attributes from the Property Editor
General Attributes
Geometry Attributes
Meshing Attributes
Boundary Condition Attributes
Metadata Attributes

Command Line Workspace

Command Window
Entering Commands
Repeating Commands
Interrupting Running Tasks
Error Window
History Window
Script Window
Docking and Undocking the Input Window

Journal File Editor

Journal Editor Toolbar

Toolbars

File
Display
Select

Drop Down Menus

Cubit (Mac Only)
File

Edit

View

Display

Tools

38

39

40
41
41
42

43
44
46
47

48
48

49
50
50

51
52
52
52
52
53
53

53
54
54
54
54
54
54
55
55

55
56

57
57
57
58

58
58
58
59
59
59
59

Table Of Contents

Help 59
Options Menu 60
Custom Tools 60
Display Preferences 60
General Preferences 60
Geometry Defaults 61
History Preferences 61
Cubit History Preferences 61
Label Defaults 61
Layout Preferences 62
Cubit Layout Settings 62
Mesh Defaults 62
Mouse Settings 62
Post Processor Settings 62
Quality Defaults 62
Creating Custom Toolbar Buttons 63
Undo Button 63
Limitations 63
Command Recording and Playback 64
Journal File Creation and Playback 64
Recording a Session 64
Replaying a Session 64
Controlling Playback of Journal Files 64
Automatic Journal File Creation 65
Controlling Automatic Journal File Creation 65
Recording Graphics Commands 65
Recording Entity IDs and Names 66
Recording APREPRO Commands 66
Recording Errors 66
Idless Journal Files 66
Graphics Window Control 67
Updating the Display 67
Prevent Graphics From Updating 68
Command Line View Navigation: Zoom, Pan and Rotate 68
Rotation 68
Panning 68
Zooming 69
Mouse Based View Navigation: Zoom, Pan and Rotate 69
Changing the View Transformation Button Bindings 70
Saving and Restoring Views 70

CUBIT 11.0 User Documentation

Graphics Modes

Truehiddenline Options
Displaying Using the Element Facets
Displaying Composite Surface Lines

Drawing and Highlighting Entities

Drawing Other Objects
Displaying Entity Orientation
Volume Sources and Targets
Model Axis
Surface Isoparameter Lines
Surface Overlap
Geometry Preview

Mesh Visualization

Notes on Mesh Slicing
Mesh Slicing Command

Entity Labels

Colors

Specifying Colors in Commands
User-Defined Colors
Assigning Colors

Geometry and Mesh Entity Visibility

Graphics Camera

Changing Camera Attributes Directly

Graphics Lighting Model

Graphics Window Size and Position

Using Multiple Windows

Saving Graphics Views

Hardcopy Output

Screen Capture Programs

Miscellaneous Graphics Options

Silhouette Lines
Line Width

Highlight Line Width
Text Size

Point Size

Graphics Status
Graphics Scale
Model Axis

Corner Axis (Triad)
Resetting the Graphics
Shrink

Facet Tolerance

Vi

71
72
72
73

73
74
74
74
75
75
75
75

75

75
75

76

77
77
78
78

79

79
80

81

81
81

81

82
82

83
83
83
83
83
84
84
84
84
84
84
85
86

Table Of Contents

Entity Selection 86
Command Line Entity Specification 86
Types of Entity Range Input 87
Extended Command Line Entity Specification 88
Extended Parsing Syntax 88
Keywords 88
Functions 89
Precedence 90
Selecting Entities with the Mouse 90
Entity Selection 91
Query Selection 92
Multiple Selected Entities 92
Information About the Selection 92
Picked Group 92
Substituting Selection into Other Commands 92
Location, Direction and Axis Specification 93
Specifying a Location 94
Position (XYZ values) 94

Last Location Used in a Command 94
Node or Vertex 94

On a Curve 94

On a Surface 95
Center 95
Extrema 95

Fire Ray 95
Between 95
Move 96
Swing 96
Multiple Location Specification 96
Previewing a Location 97
Specifying a Location on a Curve or Curves 97
Start, Midpoint, or End 97
Fraction 97
Distance 97
{Close_To|At} Location 98
Extrema 98
Segment 98
Crossing 98
Previewing a Location on a Curve 99
Specifying a Direction 99
Vector (XYZ values) 99

Last Direction Used 929
X]Y|Z|NX|Ny|Nz 99

On Curve Tangent 100

On Surface Normal 100
From Location 100
Rotate 101
Cross 101

vii

CUBIT 11.0 User Documentation

Reverse 101
Previewing a Direction 101
Specifying an Axis 101
Last 101
Specify an origin and a vector 101
Revolve an axis about an axis 102
Previewing an Axis 102
Specifying a Plane 102
Location and Normal Vector 103
Location and Two Vectors on the Plane 103

Two Locations and Vector on the Plane 104
Three Points on the Plane 104
Plane defined by a Surface 105
Plane Normal to a Curve 105
Normal Vector and Coefficient 106
Coordinate Plane 106

Last Location Used 106
Previewing a Plane 107
Drawing a Location, Direction, or Axis 107
Listing Information 107
List Model Summary 108
List Geometry 108
List Mesh 110
List Special Entities 110
List Cubit Environment 110
Message Output Settings 110
Graphical Display Information 112
Memory Usage Information 112
Entity Measurement 112
Measure Between 113
Measure Small 113
Measure Angle 113
Geometry 114
CUBIT Geometry Formats 114
Setting the Geometry Kernel 114
Terms 114
Topology 115
Bodies and Volumes 115
Non-Manifold Topology 115

viii

Table Of Contents

ACIS Geometry Kernel 115
Granite Geometry Kernel 115
Limitations 115
Mesh-Based Geometry 117
Creating Mesh-Based Geometry Models 117
Improving Mesh-Based Geometry Models for Meshing 118
Meshing Mesh-Based Models 119
Exporting Mesh-Based Geometry 119
Geometry Creation 119
Bottom-Up Geometry Creation 120
Creating Vertices 120
Creating Curves 121
Creating Surfaces 124
Creating Bodies 129
Geometric Primitives 133
General Notes 134
Creating Bricks 134
Creating Cylinders 134
Creating Prisms 135
Creating Frustrums 135
Creating Pyramids 135
Creating Spheres 136
Creating Toruses 136
Geometry Transforms 136
Align Command 137
Copy Command 137
Move Command 137
Moving Other Geometric Entities 137
Moving Bodies Relative to Other Geometric Entities 138
Moving Merged Entities 138
Move Undo 138

CUBIT 11.0 User Documentation

Scale Command

Rotate Command

Reflect Command

Geometry Booleans

Intersect

Subtract

Unite

Geometry Cleanup and Defeaturing

Healing

Analyzing Geometry

Healer Settings

Healing Attributes

Auto Healing

Spline Removal

What if Healing is Unsuccessful?

Regularizing Geometry

Finding Surface Overlap

Facetted Representation
Find Overlap Settings

Validating Geometry

Debugging Geometry

Geometry Accuracy

Tweaking Geometry

Tweaking Vertices

Tweaking a Vertex With a Chamfer
Tweaking a Vertex With a Non-Equal Chamfer
Tweaking a Vertex With a Fillet Radius

Tweaking Curves

Create a Chamfer or Fillet
Tweaking a Curve Using an Offset Distance
Removing a Curve

138

138

139

139

139

139

139

140

140

140
141

141

141

142

142

143

143
143
143

144

145

146

146

146

146

147
147

148
148
149
150

Table Of Contents

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Tweaking a Pair of Curves to a Corner

Tweaking Surfaces

150
152

152

Tweaking a Surface Using an Offset
Tweaking a Surface by Moving
Tweaking Surfaces to Target Surfaces
Removing a Surface

Tweaking a Conical Surface

Tweak Remove Topology

153
153
153
154
154

155

Example

Removing Geometric Features

156

158

Removing Vertices

158

Removing Surfaces

158

Remove Sliver Surface

Trimming and Extending Curves

159

159

Trimming a Curve
Extending a Curve

Automatic Geometry Clean-up

160
161

161

Automatic Forced Sweepability

161

Automatic Small Curve Removal

162

Automatic Small Surface Removal

163

Automatic Surface Split

164

Geometry Decomposition

164

Web Cutting

164

General Notes

Chop Command

165

165

Web Cutting with a Planar or Cylindrical Surface
Coordinate Plane
Planar Surface
Plane from 3 Points
Plane Normal to Curve
Cylindrical Surface
Previewing a Web Cut Plane

165

165
166
166
166
166
166

Xi

CUBIT 11.0 User Documentation

Web Cutting with an Arbitrary Surface

Web Cutting using a Tool or Sheet Body

Web Cutting by Sweeping Curves or Surfaces

Webcut by sweeping a surface along a trajectory
Webcut by sweeping a surface about an axis
Webcut by sweeping a curve(s) along a trajectory
Webcut by sweeping a curve(s) about an axis

Web Cutting Options

Web Cutting Preview

Preview a Webcutting Plane
Preview a Web Cutting Cylinder

Splitting Geometry

Split Curve

Split Surface

Split Across
Split Extend
Split (Automatically)

Split Periodic Surfaces

Separating Multi-Volume Bodies

Section Command

Geometry Imprinting and Merging

Imprinting Geometry

Regular Imprinting
Tolerant Imprinting
Mesh-Based Imprinting

Merging Geometry

Merge geometry automatically

Test for merging in a specified group of geometry
Measure Vertex Coincidence

Force merge specified geometry entities
Preventing geometry from merging

xii

167

167

168
168
169
169
170

170

170
170
170

171

171

171
171
172
175

186

186

186

186

187
187
187
188

188
188
188
188
189
189

Table Of Contents

Examining Merged Entities

189

Merge Tolerance

189

Unmerging

190

Using Geometry Merging to Verify Geometry

190

Virtual Geometry

190

Composite Geometry

191

Composite Curves

191

Composite Surfaces

191

Controlling the Surface Evaluation Method for Composite Surfaces

Composite Determination

Partitioned Geometry

192
192

193

Partitioned Curves

193

Partitioned Surfaces

194

Partitioning with Vertices and Nodes
Partitioning with Hard Points
Partitioning with Polylines

Partitioning with Curves

Partitioning with Mesh Edges

Partitioning with Faces or Triangles

Partitioned Volumes

194
194
194
195
195
195

195

Using Mesh Intersections to Partition Surfaces

Removing Partitions

196

197

Collapse Geometry

198

Collapse Angle

198

Collapse Curve

200

Collapse Surface

201

Simplify Geometry

202

Feature Angle
Respecting Curves and Surfaces
Respecting Imprints

Deleting Virtual Geometry

203
204
204

204

Removing Virtual Geometry
Using The Delete Command With Composites

204
205

Xiii

CUBIT 11.0 User Documentation

Using the Delete Command With Partitions

Geometry Orientation

Adjusting Orientation

Geometry Groups

Basic Group Operations

Geometry Groups
Group Booleans
Mesh Groups
Deleting Groups
Cleaning Out Groups

Groups in Graphics

Propagated Hex Groups

Propagated Hex Group Starting on a Face

Ending at a Surface

Ending at a Face

Number of Times

Ending at a Surface with Multiple
Ending at a Face with Multiple
Number of Times with Multiple
Ending at Face with Direction
Ending at Surface with Direction
Number of Times with Direction

Propagated Hex Group Starting on a Surface

Ending at a Surface

Number of Times

Ending at a Surface with Multiple
Number of Times with Multiple
Ending at Surface with Direction
Number of Times with Direction

Naming Convention for Propagated Hex Groups

Quality Groups

Geometry Attributes

Entity Names

Valid and Invalid Names
Reconciling Duplicate Names
Automatic Name Creation
Automatic Name Propagation
Naming Merged Entities

Entity IDs

Gaps in ID space
Renumbering IDs

Xiv

205

205
206

206

207
207
207
207
207
207

208

208

208
208
208
209
209
209
209
210
210
210

210
211
211
211
211
212
212

212

213

213

214
214
214
214
214
215

216

216
216

Table Of Contents

Persistent Attributes

216

Attribute Behavior

217

Attribute Types

217

Attribute Commands

217

Control By Attribute Type or Geometric Entity

Using CUBIT Attributes

218

218

Geometry Deletion

218

Parts, Assemblies, and Metadata

219

Overview of Parts, Assemblies and Metadata

Working With Parts and Assemblies

219

219

Identifying Parts and Assemblies
Creating Parts and Assemblies

Deleting Parts and Assemblies
Associating Parts with Volumes

Viewing All Assembly Information at Once

Metadata Attributes

219
220
220
220
220

221

Part and Assembly Metadata Attributes

Viewing Part and Assembly Metadata Attribute Values
Modifying Metadata Attributes

Viewing and Modifying Global Metadata

Importing and Exporting Metadata

221
222
222
222

223

Importing Metadata
Exporting Metadata
Importing and Exporting DART Atrtifacts

Mesh Generation

223
223
224

225

Element Types
Mesh Generation Process

Interval Assignment

225
225

226

Interval Firmness

226

Precedence

Explicit Specification of Intervals

227

227

Automatic Specification of Intervals

227

Default auto interval specification
Maximum Spanning Angle on Arcs

229
229

XV

CUBIT 11.0 User Documentation

Interval Matching

Periodic Intervals

Relative Intervals

Mesh Interval Preview

Meshing Schemes

Traditional Meshing Schemes
Free Meshing Schemes
Conversional Meshing Schemes
Duplication Meshing Schemes
General Meshing Information

Bias Dualbias

Circle

Curvature

Equal

Hole

Mapping

Pave

Element Shape Improvement
Controlling Flattening of Elements
Controlling the Grid Search for Intersection Checking
Controlling the Paver Sizing Function
Surface Vertex Types
Surface Vertex Commands
Listing and Drawing Vertex Types
Triangle Vertex Types
Adjusting the Automatic Vertex Type Selection Algorithm
Volume Curve Types

XVi

230

231

231

231

231
232
232
232
232
232

234

235

235

236

236

237

238
238
239
239
239
239
240
241
241
241
241

Table Of Contents

Pentagon 242
Pinpoint 243
Polyhedron 243
Sphere 245
STransition 245
Submap 247
Stretch 249
Stride 249
Sweep 250
Multisweep 252
Smoothing Swept Meshes 253
Some helpful hints in using sweep 254
Autosmooth 254
Grouping Sweepable Volumes 255
TetMesh 255
Using tets as the basis of an unstructured hexahedral mesh 255
Conforming the tetmesh to internal features 256
Tetprimitive 257
TriDelaunay 258
TriMap 258
TriMesh, TriAdvance 259
TriPave 260
TriPrimitive 260
Radialmesh 261
Dice 265
Refining a Mesh with Dicing 266
Detailed Discussion: 266
Extended Dicing Commands 267
Constraining Nodes to Geometry: 268
Deleting a Fine Mesh 268
Interaction with Dicer Sheets 268
HTet 268
Unstructured 269
Structured 269

XVii

CUBIT 11.0 User Documentation

QTri

THex

TQuad

Copying a Mesh

Mirroring a Mesh

Automatic Scheme Selection

Default Scheme Selection

Auto Scheme Selection General Notes
Scheme Firmness

Surface Auto Scheme Selection
Volume Auto Scheme Selection

Parallel Meshing

Meshing the Geometry

Default Scheme and Interval Selection
Remeshing a Volume

Remeshing a Swept Volume Mesh
Continuing Meshing After a Mesh Failure

Mesh Quality Assessment

Metrics for Triangular Elements

Approximate Triangular Quality Definitions:
Comments on Algebraic Quality Measures
References for Triangular Quality Measures

Metrics for Quadrilateral Elements

Quadrilateral Quality Definitions

Comments on Algebraic Quality Measures
References for Quadrilateral Quality Measures
Details on Robinson Metrics for Quadrilaterals

Metrics for Tetrahedral Elements

Tetrahedral Quality Definitions
References for Tetrahedral Quality Measures

Metrics for Hexahedral Elements

Hexahedral Quality Definitions
References for Hexahedral Quality Measures

Mesh Quality Command Syntax

Quiality Options
Scope
Draw
List
Filter

XViii

269

270

272

273

274

275
276
276
277
277
278

278

278
279
279
279
279

279

280
280
281
281

281
282
282
283
283

283
284
284

284
285
286

286
286
287
287
288
288

Table Of Contents

Mesh Quality Example Output 288
Automatic Mesh Quality Assessment 290
Controlling Mesh Quality 291
Skew Control 291
Propagate Curve Bias 291
Adjust Boundary 292
Coincident Node Check 292
Mesh Modification 292
Mesh Smoothing 292
Centroid Area Pull 294
Equipotential 294
Laplacian 294
Smart Laplacian 295
Condition Number 295
Mean Ratio 296
Winslow 297
Untangle 297
Mesh Refinement 298
Uniform Mesh Refinement 298
Refining at a Geometric or Mesh Feature 299
Hexahedral Refinement Using Sheet Insertion 301
Refining at a Geometric Feature 301
Refining along a path 302
Refining a Hex Sheet 302

Hex Sheet Drawing 304
Mesh Coarsening 304
Hexahedral Coarsening 304
Extracting a Single Hex Sheet 304
Extracting multiple sheets along a curve 305
Uniform hex coarsening 306
Collapsing Mesh Edges 306
Node and Nodeset Repositioning 306
Deleting, Creating and Merging Mesh Elements 306
Deleting Mesh Elements 307
Creating Mesh Elements 307

XiX

CUBIT 11.0 User Documentation

Creating Hex and Tet Elements
Creating Face and Tri Elements
Creating Edge Elements
Creating Nodes

Merging Nodes

Align Mesh

Mesh Validity

Mesh Adaptivity and Sizing Functions

Adaptive Curve Meshing
Adaptive Surface Meshing
Adaptive Volume Meshing

Geometry Adaptive Sizing Function (Skeleton Sizing)
Skeleton Sizing Behaviors
Command Line Syntax
Basic Arguments
Scaling and Accuracy Arguements:
Advanced Arguments
Lattice Arguments:
Source Entity Arguments
Skeleton with Other Sizing Controls
Limitations

Bias Sizing Function

Constant Sizing Function

Curvature Sizing Function

Linear Sizing Function

Interval Sizing Function

Inverse Sizing Function

Exodus ll-based Field Function

Curve Meshing with Exodus 1l - based Field Functions

Mesh Deletion

Importing and Exporting Files

Importing Geometry

Other Formats

Importing ACIS Files

Importing ACIS files at startup

XX

307
309
309
309
310

310

310

311
311
311
312

312
314
314
314
314
315
315
315
315
316

316

321

322

323

325

325

326
327

327

329

329
329

329
330

Table Of Contents

Importing FASTQ Files 330
Importing STEP Files 330
Exporting a STEP file from Pro/Engineer 331
Setting Up CUBIT to Use STEP Tools 331
Importing IGES Files 332
Manifold Solid B-rep Objects (MSBO) 332
Importing Facet Files 333
Facet File Format 334
Feature Angle 334
Smooth Curves and Surfaces 334
Merge 334
Make elements 334
Stitch 335
Improve 335
Importing Granite Files 335
Exporting Geometry 336
Exporting ACIS Files 336
Exporting STEP Files 337
Exporting IGES Files 337
Exporting Granite Files 337
Exporting Facet Files 337
Importing a Mesh 338
Importing 2D Exodus Files 338
Importing Exodus Il Files 339
Mesh-Based Geometry 339
File Name 339
Blocks 339
Start ID 340
Nodesets/Sidesets 340
Feature Angle 341
Smooth Curves and Surfaces 341
Apply Deformations 342
Merge 342
Merge Nodes 342
Export Facets 343

XXi

CUBIT 11.0 User Documentation

Importing Patran Files

Importing I-DEAS Files

Importing Abaqus Files

Importing a Free Mesh

Importing a Mesh with Nodeset Associativity
Importing a Mesh onto Modified Geometry

Mesh Import Tolerance

Importing a Mesh without Geometry Associativity
Specifying a Portion of the Mesh to be Imported
Unique Genesis IDs and Shell Options

Exporting the Finite Element Model

Other Formats

Exporting an Exodus Il File

Controlling Element and Node ID Maps
Exporting a Parallel Mesh for pPCAMAL
Converting an Exodus I file to ASCII

Exporting ABAQUS Files

Exporting LS-DYNA Files

Exporting Patran Neutral Files

Exporting Fluent Grid Files

Finite Element Model

Finite Element Model Definitions

Element Blocks
Nodesets
Sidesets
Element Types

Element Block Specification

Creating Element Blocks

Assigning a Name or Description to an Element Block

Defining the Element Type
Default Element Blocks
Assigning Attributes to Blocks
Displaying Element Blocks
Deleting Element Blocks

Automatically Assigning Mesh Edges to a Block (Rebar)

Diagonal and Orthogonal Rebar Blocks
Specifying a set of nodes

Creating Beam Blocks (Spider)

2D Elements

Nodeset and Sideset Specification

Creating Nodesets and Sidesets

XXii

343

343

343

343
344
344
345
345
345
345

345
345

346
346
346
347

347

348

348

348

350

350
350
350
350
350

351
351
352
352
353
353
354
354
354
354
355
356
357

357
358

Table Of Contents

Assigning Names and Descriptions to Nodesets and Sidesets 358
Grouping Faces on a Surface into a Sideset 359
Deleting Nodesets and Sidesets 359
Displaying Nodesets and Sidesets 359
Nodeset Associativity Data 359
Equation-Controlled Distribution Factors 360
Cohesive Elements 361
Multiple Curves in FLATQUAD Blocks 362
Exodus Il Model Title 363
Transforming Mesh Coordinates 363
Exodus Coordinate Frames 364
Exodus Il File Specification 365
Exodus Il Manual 365
Element Block Definition Examples 365
Multiple Element Blocks 365
Surface Mesh Only 365
Two-dimensional Mesh 365
Immersive Topology Environment for Meshing (ITEM) 366
Guiding the user through the workflow. 366
Providing the user with smart options. 366
Automating geometry and meshing tasks. 367
How to Use the ITEM Wizard 367
The ITEM Workflow 367
Using an ITEM Panel 368
Task panels that link to other ITEM panels 369
Task Panels that Link to Control Panels 369
Set-up Panels 370
Diagnostic Panels 371
Undo Button 373
Magic Mesh Button 373
Getting Help 373
Defining the Geometric Model 373
Setting up the Finite Element Model 374
Clean Up the Geometry 375
Bad geometry representation 376
Detecting Invalid Geometry 376
Resolving Invalid Geometry 377
Small details in the model 377
Small Curves 377
Small and Narrow Surfaces 378

xxiii

CUBIT 11.0 User Documentation

Contact Surfaces

Resolving Problems with Conformal Assemblies

Resolving Misaligned Volumes
Correcting Merge Problems

Building a Sweepable Topology

Blend Surfaces

Geometry Decomposition

Recognizing Nearly Sweepable Regions

Forced Sweepability

Generating a Mesh in ITEM

ITEM Meshing Suggestions

Validating the Mesh in ITEM

Step-By-Step Tutorials

Additional Tutorials

Command Line Basic Tutorial

Overview

Command Line Basic Tutorial

Step 1: Beginning Execution

Command Line Basic Tutorial

Step 2: Beginning Execution

Command Line Basic Tutorial

Step 3: Creating the Cylinder

Command Line Basic Tutorial

Step 4: Adjusting the Graphics Display
Command Line
Mouse

Command Line Basic Tutorial

Step 5: Forming the Hole

Command Line Basic Tutorial

Step 6: Setting Interval Sizes

Command Line Basic Tutorial

Step 7: Surface Meshing

Command Line Basic Tutorial

Step 8: Surface Meshing

XXiv

380

381

381
381

383

383

384

385

386

387
388

390

392
392

393
393

394
394

395
395

396
396

397
397
397
398

399
399

400
400

401
401

402
402

Table Of Contents

Command Line Basic Tutorial

404

Step 9: Inspecting the Model

Command Line Basic Tutorial

404

409

Step 10: Defining Boundary Conditions

Command Line Basic Tutorial

409

409

Step 11: Exporting the Mesh

GUI Basic Tutorial

409

409

Overview

GUI Basic Tutorial

409

411

Step 1: Beginning Execution

GUI Basic Tutorial

411

412

Step 2: Creating the Brick

GUI Basic Tutorial

412

414

Step 3: Creating the Cylinder

GUI Basic Tutorial

414

415

Step 4: Adjusting the Graphics Display

GUI Basic Tutorial

415

416

Step 5: Forming the Hole

GUI Basic Tutorial

416

418

Step 6: Setting Interval Sizes

GUI Basic Tutorial

418

421

Step 7: Surface Meshing

GUI Basic Tutorial

421

424

Step 8: Volume Meshing

GUI Basic Tutorial

424

426

Step 9: Inspecting the Model

GUI Basic Tutorial

426

428

Step 10: Defining Boundary Conditions

GUI Basic Tutorial

428

430

Step 11: Exporting the Mesh

Power Tools GUI Tutorial

430

431

Overview

Power Tools GUI Tutorial

431

432

Step 1: Import the Geometry

432

XXV

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 2: Analyze the Geometry

Power Tools GUI Tutorial

Step 3: Healing the Geometry

Power Tools GUI Tutorial

Step 4: Mesh Power Tools

Power Tools GUI Tutorial

Step 5: Splitting Filleted Surfaces

Power Tools GUI Tutorial

Step 6: Web Cutting

Power Tools GUI Tutorial

Step 7: Removing Small Surfaces

Power Tools GUI Tutorial

Step 8: Tweaking Surfaces

Power Tools GUI Tutorial

Step 9: Imprint/Merge

Power Tools GUI Tutorial

Step 10: Compositing Surfaces

Power Tools GUI Tutorial

Step 11: Meshing the Model

Decomposition Tutorial

Creating Sweepable Volumes Through Webcutting

Why use sweeping?

What makes a volume sweepable?
Basic Sweep Groups
Points to consider when determining whether a volume is sweepable
Basic Sweep Paths

What are some good strategies for decomposing my model?

Example 1. Sweeping multiple adjacent volumes

Suggested webcut
Final mesh

Example 2. Interlocking rings

Suggested webcuts
Final mesh

Example 3. Webcutting using the sweep option

Suggested webcuts
Final mesh

Example 4. Using the Loft command

Suggested webcuts

XXVi

435
435

439
439

442
442

443
443

447
447

454
454

459
459

462
462

464
464

473
473

479
479
480
480
480
481
482
482

485

486
487

487
488
489

490

490
491

492
492

Table Of Contents

Final mesh 494
Example 5. Multiple sweep directions 495
Suggested webcuts 496
Final mesh 497
Example 7. Employing Symmetry 497
Suggested webcuts 498
Final mesh 510
Example 8. Using virtual geometry in geometry decomposition 510
Suggested webcuts 511
Final mesh 521
Example 9. Sweeping volumes with narrow angles and surfaces 522
Suggested webcuts 522
Final mesh 535
Geometry Cleanup Process Flow 537
Appendix 538
Examples 538
General Comments 538
Example:Simple Internal Geometry Generation 539
Meshing with Autoscheme 540
Example: Octant of a Sphere 540
Example: Box Beam 541
Block, Block Attribute 543
NodeSet Move 543
Merge 543
Example: Thunderbird 543
Example: Advanced Tutorial 546
Alpha Commands 547
Automatic Detail Suppression 547
Example 548
Automatic Geometry Decomposition 549
FeatureSize 550
Mesh Cutting 550
Coordinate Plane 551
Planar Surface 551

XXVii

CUBIT 11.0 User Documentation

Plane from 3 points

Extended Surface
Meshcut Options
Meshcutting Scope
Meshcutting Example

Mesh Grafting

Grafting Options
Grafting Scope

Optimize Jacobian

Randomize

Refine Mesh Boundary

Sculpting

Super Sizing Function

Test Sizing Function

Transition

Triangle Mesh Coarsening

Whisker Weave

Whisker Weaving Basic Commands
Whisker Weaving Options

Available Colors

Element Numbering

Node Numbering

Side Numbering

Triangular Shell Element Numbering
Node Ordering
Side Set Side Ordering

FullHex vs. NodeHex Representation

APREPRO

APREPRO Syntax

APREPRO Rules

. Functions

. Variables
Numbers
Strings

. Operators

. Delimiters

. Expressions

NouA®wWN R

XXVili

551
551
552
5562
552

557
558
558

560

561

561

562

563

564

565

567

569

570
571

571

575
575
575
576
576
576

577

577

577

578
578
578
578
578
578
578
578

Table Of Contents

8. Algebraic Expressions 578
9. String Expressions 579
10. Relational Expressions 579
11. Conditional Expressions 579
APREPRO Operators 579
1. Arithmetic Operators 580
2. Assighment Operators 580
3. Relational Operators 581
4. Boolean Operators 581
5. String Operators 581
APREPRO Predefined Variables 582
APREPRO Units 583
APREPRO Functions 586
1. Mathematical Functions 587
2. CUBIT Functions 589
3.String Functions 591
APREPRO Additional Functionality 593
1. File Inclusion 593
2. Conditionals 593
3. Loops 594
APREPRO Journaling 594
APREPRO Comments 595
Significant Figures 595
FASTQ 595
Periodic Space Filling Models (Tile) 597
Initial setup 597
Creating Nodesets 597
Smoothing 598
Example 598
Troubleshooting Guide 599
References 600
Credits 602
Quick Reference 604
Index 607

XXiX

CUBIT 11.0 User Documentation

Introduction

Key Features
Hardware Requirements

Licensing, Distribution, and Installation
Trademark Notice
How to Use this Manual

Cubit Mailing Lists
Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT is a full-featured software
toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its
main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking
assemblies. It is a solid-modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-sweeping,
tet meshing, and various special purpose primitives. CUBIT contains many algorithms for controlling and automating
much of the meshing process, such as automatic scheme selection, interval matching, sweep grouping and sweep
verification, and also includes state-of-the-art smoothing algorithms

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing algorithms that require varying
degrees of input to produce a complete finite element model. Many CUBIT users want to experiment with capabilities as
soon as possible. Hence, CUBIT releases often contain algorithms which are not quite ready for production use.

The overall goal of the CUBIT project is to reduce the time it takes a person to generate an analysis model. Generating
meshes for complex, solid model-based geometries requires a variety of tools. Many CUBIT tools are completely
automatic, while others require user input. Usually, the automatic choices can be over-ridden by the user if necessary.
Most meshing capabilities are integrated into the common CUBIT framework; there are also stand-alone tools like Verde.
The user is encouraged to become familiar with all of the available tools, so that he can choose the right one for the job.

Key Features

Geometry Creation, Modification, and Healing

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is also mesh-based geometry,
and a Granite port for Pro Engineer files. Other solid model kernels are planned. Geometry is imported or created within
CUBIT. Geometry is created bottom-up or through primitives. CUBIT imports ACIS SAT files. CUBIT can also read STEP,
IGES, and FASTQ files and convert them to the ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD
systems can write SAT files directly.

Once in CUBIT, an ACIS model is modified through Booleans. Without changing the geometric definition of the model, the
topology of the model may be changed using virtual geometry. For example, virtual geometry can be used to composite
two surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The model can be healed inside
CUBIT.

Non-Manifold Topology

Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT accomplishes this by
taking the two touching surfaces of neighboring volumes, and merging them into a single surface. There will be only one
mesh of the surface, and both volume meshes will share that surface mesh. (In contrast, some meshing packages keep
two surfaces, and take steps to ensure their mesh connectivity and positions match.)

These shared surfaces are called "non-manifold topology". Geometric models are usually imported into CUBIT as
manifold (non-shared) models; then, surfaces which pass a geometric and topological comparison are "merged". A similar
technique is used to merge model edges and vertices across parts. These comparisons are performed automatically, and
can optionally be restricted to subsets of the model (to allow representations of such features as slide lines).

CUBIT 11.0 User Documentation

Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing. CUBIT contains a wide variety
of tools for interactive geometry decomposition, and a capability for performing automatic geometry decomposition is also
under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions. While the primary focus of
CUBIT is on generating unstructured quadrilateral and hexahedral meshes, algorithms are also available for structured
mesh generation and triangle/tetrahedral mesh generation. Several algorithms for generating mixed hex-tet meshes are
also being developed.

Boundary Conditions

CUBIT uses the EXODUS-II format for importing and exporting mesh data. EXODUS represents boundary conditions on
meshes using Element Blocks, Nodesets, and Sidesets. Element Blocks are used to group elements by material type.
Nodesets are used to group nodes. Other tools can apply nodal boundary conditions to these sets, for example enforced
displacement or nodal temperature values. Sidesets are used to group sides of elements, such as faces of hexes or
edges of quads. Other tools can apply face-based and edge-based boundary conditions to these sets, for example
pressure or heat flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified in an analysis-
independent manner. Typically this specification is combined with an additional data file which designates the specific
type of boundary condition (temperature, displacement, pressure, etc.), along with boundary condition values.

Element Types

CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various orders. Each block has a
unique element type. The element type is specified after the block is created, and after mesh generation (recommended).
Higher order nodes are generated when the element type is specified. Higher order nodes are projected to curved
geometry, depending on the user-settable node constraint flag.

Graphics Display Capabilities

CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display geometric and mesh entities in
several modes, including hidden line, shaded, transparent or wireframe modes. CUBIT supports screen picking of
geometric and mesh entities, as well as mouse-controlled view transformations like rotate, pan, and zoom. VTK takes
advantage of hardware acceleration on most supported platforms. Image files of any displayed image can also be
generated. CUBIT can also be run without graphics, to allow execution in batch mode or over slow network connections.

Graphical User Interface

A full graphical user interface (GUI) with the standard look and feel consistent with major platforms is available on all
supported Cubit platforms. The GUI version can improve productivity, making new users aware of the wide range of
CUBIT capabilities, and freeing new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from one environment to the other.

Command Line Interface

In the command line interface, commands are specified by text rather than mouse clicks. Commands can be entered
interactively or in batch mode by playing back a journal file. The command line interface is available in the GUI through a
window. The non-GUI version supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes support the APREPRO
preprocessor, which allows parameterization of input. The non-GUI version is available on all platforms, including
Windows.

CUBIT 11.0 User Documentation

How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is divided into chapters, which
roughly follow the process in which a finite element model is created, from geometry creation to mesh generation to
boundary condition application. An example is provided in a tutorial. Appendices contain advanced topics, advanced
examples, installation instructions, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-beware state. As they are
further tested (often with the assistance of users) and improved, the tool becomes more
stable and production-worthy. Since documentation of the tool is necessary for actual use,
we have included the documentation of all available tools. However, a "hammer" icon is
placed next to some capabilities as a warning.

Certain portions of this manual contain information that is vital for understanding and
effectively using CUBIT. These portions are highlighted with a "key" icon.

Licensing, Distribution and Installation

The CUBIT code is available for use by personnel inside Sandia, any other government laboratory, or to personnel
performing work under contract by a US government entity. In addition, CUBIT can be licensed for non-commercial and
research use. For more information on licensing of CUBIT, see the CUBIT web page
(http://malla.sandia.gov/cubit/index.html) or send email to cubit-dev@sandia.gov.

CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE COPIED TO ANOTHER COMPUTER AND
THE NUMBER OF USER SEATS ON EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and licensed to the CUBIT project. Since the
number of licenses for these modules is limited, CUBIT cannot be copied and redistributed without notifying the CUBIT
team.

CUBIT is distributed in statically linked executable form for each supported platform. Supported platforms are listed under
Hardware Requirements. Additional platforms will be added as required.

Instructions for obtaining the CUBIT code will be given after licensing arrangements have been completed.

In addition to the CUBIT executable, the suite of example problems described in this manual is available upon request.

Hardware Requirements

Cubit is available on the following platforms:

e Linux RedHat 9.0 32- and 64-bit*
e Windows 2000/XP
(] Mac OS X

The Graphical User Interface version is available on all platforms.

* Please note that IGES and STEP import and export are not available on 64-bit platforms.

Trademark Notice

HP-UX is a registered trademark of Hewlett-Packard Company.
Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.

IRIX is a registered trademark of Silicon Graphics, Inc.

CUBIT 11.0 User Documentation

ACIS is a proprietary format developed by Spatial Technologies.

Granite is a proprietary format developed by Parametric Technology Corporation

All other trademarks are the property of their respective owners.

CUBIT Mailing Lists

The CUBIT team maintains a couple of mailing lists to help our users.

1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of new releases and other
items of major importance. To subscribe to this list, send a message to: majordomo@sandia.gov
with the body of the message being:

subscribe cubit-announce

2) The cubit users mailing list is a medium-volume mailing list intended for our users to communicate with each other and
ask help of the user community. It also contains the same announcements as the cubit-announce mailing list. To send
questions or comments to this list, send email to:

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a message body consisting of
the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct communication with the CUBIT developers.
These messages won't reach other users. This list should be used for topics that are not of general interest to others,
including some bugs.

Note: The recommended use of an electronic mailing list to report bugs and request
enhancements is not intended to discourage face-to-face discussion with CUBIT
developers, but rather to minimize response time. Users are encouraged to discuss bugs,
enhancements or general meshing issues with the CUBIT production meshing and
development teams.

Problem Reports and Enhancement Requests

CUBIT bugs, problem reports and enhancement requests should be sent to cubit@sandia.gov or cubit-dev@sandia.gov.
The CUBIT production meshing team or development team will review the email quickly. Users should expect some type
of response within two days. Bugs are usually entered by a developer into CUBIT's bug tracking system.

CUBIT 11.0 User Documentation

Environment Control

Session Control

Graphical User Interface

Command Recording and Playback
Graphics Window Control

Entity Selection and Filtering

Location, Direction, and Axis Specification
Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to analysis process. The user
interface options include a full graphical user interface, a modern command line interface as well as no-graphics and
batch mode operation. This chapter covers the interface options as well as the use of journal files, control of the graphics,
a description of methods for obtaining model information, and an overview of the help facility.

Session Control

Starting and Exiting a CUBIT Session
Execution Command Syntax
Initialization Files

Environment Variables

Command Syntax

Command Line Help

Environment Commands

Saving and Restoring a CUBIT Session
Interrupting Running Tasks

This section provides an overview to session control in CUBIT. This includes information on starting and exiting a CUBIT
session, running CUBIT in batch mode, initialization files, how to enter commands, file manipulation, changing the working
directory, memory manipulation and more. Much of your ability to use CUBIT effectively depends on mastery of concepts
in this section. Even experienced users will find it useful to review this section periodically.

Starting and Exiting a CUBIT Session

The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing "cubit" at the command prompt from
within the CUBIT directory. If you have not yet installed CUBIT, instructions for doing so can be found in Licensing
Distribution and Installation. A CUBIT console window will appear which tells the user which CUBIT version is being run
and the most recent revision date. A graphics window will also appear unless you are running with the -nographics
option. For a complete list of startup options see the Execution Command Syntax section of this document. CUBIT can
also be run with initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means that double-clicking on one
of these files will open it automatically in CUBIT. This option is available during the installation process

Exiting the Session

The CUBIT session can be discontinued with either of the following commands

Exit

CUBIT 11.0 User Documentation

Quit
Resetting the Session

A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model, allowing the user to begin a
new session without exiting CUBIT. This is accomplished with the command

Reset [Genesis | Blocks | Nodesets | Sidesets]

A subset of portions of the CUBIT database to be reset can be designated using the qualifiers listed. Advanced options
controlled with the Set command are not reset.

You can also reset the number of errors in the current Cubit session, using the command
Reset errors [value]

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub” in the current working directory
just before it exits.

To disable saving of the crashbackup.cub file set an environment variable CUBIT_NO_CRASHSAVE equal to true. Or,
use the following command:

set crash save [on|off]

This command will turn on or off crashbackup.cub creation during a crash on a per-instance basis. To minimize the effects
of unexpected aborts, use Cubit's automatic journaling feature, and remember to save your model often.

Execution Command Syntax

Execution command syntax options for the command line version of CUBIT are:

cubit
-help (Print this summary)
-Include <$val> (Specify a journal file)
-input $val (Playback commands in file $val)
-solidmodel <$val> (Read .sat or .cub from file $val)
-fastg <$val> (Read FASTQ file $val)
-initfile <$val> (Read $val as initialization file instead
of $HOME/.cubit)
-batch (Batch Mode - No Interactive Command Input)
-nographics (Do not display graphics windows)
-noinitfile (Do not read .cubit file)
-noecho (Do not echo commands to console)
-nojournal (Do not write journal file)
-nodeletions (Do not allow file deletions)
-journalfile <$val> (Name of journal file, will be overwritten)
-restore [$val] (Name of restore file (default = cubit_geom.save.sat))
-maxjournal [$val] (Maximum number of journal files to write)
-warning [$val] (Warning Messages On/Off)
-information [$val] (Informational Messages On/Off)
-debug <$val> (Set specified flags on, e.g. 1,3,7-9
enables 1,3,7,8,9))
-display <$val> (Specify display to be used for
graphics window)
-driver <$val> (Specify the type of driver to be used for
graphics display)
-nooverwritecheck (Do not perform file export overwrite check)
-variable=<value> (Assign an aprepro variable a value)

CUBIT 11.0 User Documentation

Each of these are optional. If specified, the quantities in square brackets, [$val], are optional and the quantities in angle

brackets, <$val>, are required.

Options are summarized in more detail below:

-help

-initfile <$val>

-noinitfile

-solidmodel <$val>

-batch

-nographics

-display

-driver <type>

-nojournal

-journalfile <file>

-maxjournal <$val>

-nodeletions

-nooverwritecheck

-restore

Print a short usage summary of the command syntax to the
terminal and exit.

Use the file specified by <$val> as the initialization file
instead of the default set of initialization files. See
Initialization Files

Do not read any initialization file. This overrides the default
behavior described in Initialization Files

Read the ACIS solid model geometry or .cub file information
from the file specified by <$val> prior to prompting for
interactive input.

Specify that there will be no interactive input in this
execution of CUBIT. CUBIT will terminate after reading the
initialization file, the geometry file, and the input_file_list.

Run CUBIT without graphics. This is generally used with the
-batch option or when running CUBIT over a line terminal.

Sets the location where the CUBIT graphics system will be
displayed, analogous to the -display environment variable
for the X Windows system. Unix only.

Sets the <type> of graphics display driver to be used.
Available drivers depend on platform, hardware, and system
installation. Typical drivers include X11 and OpenGL.

Do not create a journal file for this execution of CUBIT. This
option performs the same function as the Journal Off
command. The default behavior is to create a new journal
file for every execution of CUBIT.

Write the journal entries to <file>. The file will be overwritten
if it already exists.

Only create a maximum of <$val> default journal files.
Default journal files are of the form cubit#.jou where # is a
number in the range 01 to 999.

Turn off the ability to delete files with the delete file
'<filename>' command.

Turn off the file overwrite check flag. Files that are written
may then overwrite (erase) old files with the same name
with no warning. This is typically useful when re-running
journal files, in order to overwrite existing output files. See
the set File Overwrite Check [ON|off] command.

Restore the specified filename (or "cubit_geom") mesh and
ACIS files, e.g. cubit_geom.save.g and
cubit_geom.save.sat.

CUBIT 11.0 User Documentation

-noecho Do not echo commands to the console. This option performs
the same function as the Echo Off command. The default
behavior is to echo commands to the console.

-debug=<$val> Set to "on" the debug message flags indicated by <$val>,
where <$val> is a comma-separated list of integers or
ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn {on]|off} the printing of information messages from
CUBIT to the console.

-warning={on|off} Turn {on]|off} the printing of warning messages from CUBIT
to the console.

-Include=<path> Allows the user to specify a journal file from the command
line.
-fastq=<file> Read the mesh and geometry definition data in the FASTQ

file <file> and interpret the data as FASTQ commands. See
T. D. Blacker, FASTQ Users Manual Version 1.2, SAND88-
1326, Sandia National Laboratories, (1988). for a
description of the FASTQ file format.

<input_file_list> Input files to be read and executed by CUBIT. Files are
processed in the order listed, and afterwards interactive
command input can be entered (unless the -batch option is
used.)

<variable=value> APREPRO variable-value pairs to be used in the CUBIT
session. Values can be either doubles or character type
(character values must be surrounded by double quotes.),
Command options can also be specified using the
CUBIT_OPT environment variable. (See Environment
Variables .)

Initialization Files

CUBIT can execute commands on startup, before interactive command input, through initialization files. This is useful if
the user frequently uses the same settings.

On Unix or Windows, the following files are played back in order, if they exist, at startup:

$HOMEDRIVE$HOMEPATH/.cubit
$HOME/.cubit
$(current working directory)/.cubit

Where $(current working directory) is determined by the program itself and words starting with '$' are environment
variables.

If the -initfile <filename> option is used on the command that starts cubit, then the other init files are skipped and only
the specified filename is played back.

The $CUBIT_DIR file is installation specific. The $SHOME file is user specific. The $PWD file is run-specific, read when
starting up cubit from a particular meshing problem's subdirectory.

These files are typically used to perform initialization commands that do not change from one execution to the next, such
as turning off journal file output, specifying default mouse buttons, setting geometric and mesh entity colors, and setting
the size of the graphics window.

CUBIT 11.0 User Documentation

Environment Variables

CUBIT can interpret the following environment variables. These settings are only applicable to the Command Line Version
of CUBIT and do not apply to the Graphical User Interface. See also the CUBIT_STEP_PATH and CUBIT_IGES_PATH
environment variables. See also the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the specified X-Window display. This
is useful for running CUBIT across a network, or on a machine with more than
one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any option that is valid from the
command line may be used in this environment variable. See Execution
Command Syntax.

CUBIT_Journal Specifies path and name to use for journal file. The specified path may contain
the following %-escape sequences:

%a - abbreviated weekday name
%A - full weekday name

%b - abbreviated month name
%B - full month name

%(d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]
%I - hour (12-hour clock) [01,12]
%)j - day of the year [1,366]

%m - month number [1,12]

%M - minute [00,59]

%n - replaced with the next available number between 01 and 999.
%p - "a.m." or "p.m."

%S - seconds [00,61]

%u - weekday [1,7], 1 is Monday
%U - week of year [00,53]

%w - weekday [0,6], 0 is Sunday
%y - year without century [00,99]
%Y - year with century (e.g. 1999)
%% - a'%' character

The default value is "cubit%n.jou". This creates journal files in the current
directory named "cubit00.jou", "cubit01.jou", "cubit02.jou", etc. To keep the same
naming scheme but create the files the /tmp directory, set CUBIT_JOURNAL to
"[tmp/cubit%n.jou"

To create journal files in directories according to the day of the week, first create
directories named "Mon", "Tues", etc. CUBIT will not create them for you. Next
set CUBIT_JOURNAL to

"%a/%n.jou". This will create journal files named "01.jou" through "999.jou" in the
appropriate directory for the current day of the week.

Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or by reading them in from a
journal file. Throughout this document, each function or process will have a description of the corresponding CUBIT
command; in this section, general conventions for command syntax will be described. The user can obtain a quick guide
to proper command format by issuing the <keyword> help command; see Command Line Help for details.

CUBIT commands are described in this manual and in the help output using the following conventions. An example of a
typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface] <range>] [Rotate
{on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax conventions.

CUBIT 11.0 User Documentation

1. Case is not significant.

2. The "#" character in any command line begins a comment. The "#" and any characters following it on the same
line are ignored. Although note that the "#" character can also be used to start an Aprepro statment. See the
Aprepro documentation for more information.

3. Commands may be abbreviated as long as enough characters are used to distinguish it from other commands.

4. The meaning and type of command parameters depend on the keyword. Some parameters used in CUBIT
commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may be in any legal C or
FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer parameter may be in any legal decimal
integer format (for example, 1, 100, 1000, but not 1.5, 1.0, Ox1F).

String: A string parameter is a literal character string contained within single or double quotes. For example,
‘This is a string' .

Filename: When a command requires a filename, the filename must be enclosed in single or double quotes. If
no path is specified, the file is understood to be in the current working directory. After entering a portion of a
filename, typing a '?" will complete the filename, or as much of the filename as possible if there is more than one
possible match.

A filename parameter must specify a legal filename on the system on which CUBIT is running. The filename
may be specified using either a relative path (../cubit/mesh.jou), a fully-qualified path
(/homel/jdoel/cubit/mesh.jou), or no path; in the latter case, the file must be in the working directory (See
Environment Commands for details.) Environment variables and aliases may also be used in the filename
specification; for example, the C-Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.

Toggle: Some commands require a "toggle" keyword to enable or disable a setting or option. Valid toggle
keywords are "on", "yes", and "true" to enable the option; and "off", "no", and "false" to disable the option.

5. Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For example:
Mesh Volume 1
Here Mesh is the verb and Volume 1 is the parameter.

* or a selector keyword or "noun” followed by a name and value of an attribute of the entity indicated. For
example:

Volume 1 Scheme Sweep Source 1 Target 2

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are parameters to the Scheme
keyword.

The notation conventions used in the command descriptions in this document are:

The command will be shown in a format that looks like this:

A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter. The value can be an
integer, a range of integers, a real number, a string, or a string denoting a filename or toggle. The valid value
types should be evident from the command or the command description.

e A series of words delimited by a vertical bar (choicel | choice2 | choice3) signifies a choice between the
parameters listed.

A toggle parameter listed in ALL CAPS signifies the default setting.
A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}) signifies required
input.

e A word enclosed in square brackets ([optional]) signifies optional input which can be entered to modify the
default behavior of the command.

e Acurly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required if that optional modifier
is used.

10

CUBIT 11.0 User Documentation

Command Line Help

In addition to the documentation you are currently viewing, CUBIT can give help on command syntax from the command
line. For help on a particular command or keyword, the user can simply type help <keyword> . In addition, if the user has
typed part of a command and is uncertain of the syntax of the remainder of the command, they can type a question mark
? and help will be printed for the sequence of keywords currently entered. It is important to note that if the user has typed
the keywords out of order, then no help will be found. If the user is not sure of the correct order of the keywords, the
ampersand & key will search on all occurrences of whatever keywords are entered, regardless of the order. The results of
this type of command are shown in the following listing.

CUBIT> volume 3 label ?
Completing commands starting with: volume, label.
Help not found for the specified word order.

CUBIT> volume 3 label &
Help for words: volume & label
Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge | firmness]

CUBIT> label volume 3 ?
Completing commands starting with: label, volume.
Label Volume [on|offiname [only|ids]|ids|interval|size|scheme|merge|firmness]

Environment Commands

Working Directory

File Manipulation

CPU Time

Comment

History

Error Logging

Determining the CUBIT Version
Echoing Commands

Digits Displayed

Working Directory

The working directory is the current directory where journal files are saved. To list the current directory type
pwd

The current path will be echoed to the screen. By default, the current directory is the directory from which CUBIT was
launched. The command to change the current directory is

cd "<new_path>"

The new path may be an absolute reference, or relative to the current directory. The <TAB> key will complete unique file
references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for this is
Is ['<file_name>"]
or
dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is

delete file ['<file_name>']

11

CUBIT 11.0 User Documentation

The file_name may include the wildcard character *, but not the wildcard character ?, since the ? is used for command
completion.

The mkdir command is used to create a new directory. The syntax for this command is:

mkdir "<directory_name>"
This creates a new directory with the specified name and path. The command accepts an absolute path, a relative path,
or no path. If a relative path is specified, it is relative to the current working directory, which can be seen by typing 'pwd' at

the cubit command prompt. If no path is specified, the new directory is created in the current working directory.

The command succeeds if the specified directory was successfully created, or if the specified directory already exists. The
command fails if the new directory's immediate parent directory does not exist or is not a directory.

CPU Time

At times it is important to see how much cpu time is being used by a command. One function available to do this is the
timer command. The syntax for this command is:

Timer [start|stop]

The start option will start a CPU timer that will continue until the stop command is issued. The elapsed time will be printed
out on the command line. If no arguments are given, the command will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]
The comment command can take multiple arguments. If an argument is an unquoted word, it is treated as an aprepro
variable and its value is printed out. Quoted strings are printed verbatim, and numbers are printed as they would be in a
journal string. For example:

CUBIT> #{x=5}

CUBIT> #{s="my string"}

CUBIT> comment "x is" x "and s is" s

User Comment: x is 5and s is my string

Journaled Command: comment "x is" x "and s is" s

History
This command allows you to display a listing of your previous commands.
history [number_of_lines]

For example, if you type history 10, the most recent 10 commands will be echoed to the input window.

Error Logging

[set] Logging Errors {off | on file '<filename>'[resume]}

This setting will allow users to echo error messages to a separate log file. The resume option will allow output to be
appended to exisiting files instead of overwriting them. For more information on CUBIT environment settings see List
Cubit Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This command reports the CUBIT version
number, the date and time the executable was compiled, and the version numbers of the ACIS solid modeler and the VTK
library linked into the executable. This information is useful when discussing available capabilities or software problems
with CUBIT developers.

12

CUBIT 11.0 User Documentation

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of commands is controlled with the
command:

[set] echo {on | off}

Digits Displayed

CUBIT uses all available precision internally, but by default will only print out a certain number of digits in order for
columns to line up nicely. The user can override that with the "set digits" command:

set Digits [<num_to_list=-1>]
If the digits are set to -1, then the default number of digits for pretty formatting are used. If the digits are set to a specific
number, such as 15, more digits of accuracy can be displayed. This may be useful when checking the exact position and
size of geometric features.
The number of digits used for listing positions, vectors and lengths can be listed using the following command:
List Digits
Examples:
CUBIT> set digits 6
Coordinates and lengths will be listed with up to 6 digits.
CUBIT> set digits 20
For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.
CUBIT> set digits -1
To reset digits to default, use 'set digits -1'

The number of coordinate and length digits listed will vary depending on the context.

Saving and Restoring a Cubit Session

There are currently two ways to save/restore a model in CUBIT. A file can be saved with either the Exodus or CUBIT File
method. The method of choice is determined by a set command. The CUBIT method is the default.

set save [exodus|CUBIT] [backups <number>]

CUBIT File Method

e o o o o
&
<
[¢]

Export

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is compact in size and
efficient to access. It includes both the geometry and the associated mesh, groups, blocks, sidesets, and nodesets. Mesh
and geometry are restored from the Cubit file in exactly the same state as when saved. For example, element faces and
edges are persistent, as well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

13

CUBIT 11.0 User Documentation

14

New

Creates a new blank model with default name, closing the current model. The New command
essentially acts like the reset command.

Open '<filename>'

Opens an existing *.cub file, closing the current model.

Save
A default file name is assigned when CUBIT is started (in very much the same way the journal files
are assigned on startup) in the form cubitO1.cub, for example. The current model filename is
displayed on the title bar of the CUBIT window. Typing save at any time during your session will save
the current model to the assigned *.cub file. The *.cub file includes the *.sat file and the mesh.
Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To change the name of
the current model, or to save the model's current geometry to a different file, use the save as
command. Note that 'save <file.cub>'is NOT a valid command.

Save

Save as 'filename.cub' [overwrite]

The set file overwrite command can be toggled on and off to allow overwriting when using the save as
command. The command is defaulted to not allow overwriting.

Set file overwrite [on|OFF]
A backup file is created by default, allowing access to previous states of the model. The backup files
are named *.cub.1, *.cub.2... The user can set the total number of backups created per model with
the following command (the default number of backups is 99,999):

Set save backups <number>

As soon as the number of model backups reaches the maximum, the lowest numbered backup file
will be removed upon subsequent backup creation.

To check on the status of a 'set' command, type in the command in question without any options. For
example, to check which save method is currently toggled, type:

Set save

Import
Appends a *.cub file to an existing model.

Import cubit ‘filename.cub’

Export

In addition to saving an entire model, one can use the export command to save only a portion of a
model. The geometry and associated mesh, groups, blocks, sidesets and nodesets are exported.
Only bodies or free surfaces, curves or vertices can be exported to a Cubit file.

Export cubit 'filename.cub' entity-list

CUBIT 11.0 User Documentation

Interrupting Running Tasks

Many operations in the command line version of CUBIT can be interrupted using <Control>-C. Pressing <Control>-C will
attempt to interrupt the running process as soon as feasible, returning the user back to the command line. Not all
operations may be interrupted, and many can only be interrupted at certain stages. Any current tasks are canceled as
soon as it is feasible to do so, including playback of journal files. The playback of a journal file is always stopped, even if
the current running task cannot be interrupted. The journal file will stop at the next opportunity, when the current task is
completed. Interrupted journal files may be resumed at the next command. See the section titled Controlling Playback of
Journal Files for more information on controlling playback of journal files.

To interrupt processes in the Graphical User Interface, see the documentation for the GUI application window.

Graphical User Interface

CUBIT Application Window
Control Panel

Graphics Window

Tree View

Property Editor

Command Line Workspace
Journal File Editor
Toolbars

Drop-Down Menus

The graphical user interface (GUI) can improve user productivity. It provides an easy way to control CUBIT without
learning command syntax. Many geometry commands are faster and easier with the GUI. The underlying GUI
components are constructed using a cross-platform development environment. As such, the GUI will behave similarly
across all platforms supported by Cubit, yet each GUI will make use of platform specific widgets.

The GUI is built on top of the CUBIT command line. This means that GUI actions are translated to a CUBIT command-line
string and journaled. Users familiar with command-line syntax can enter the same text in the GUI command-line window.
Journal files can be created and played back in both environments with the same results. Although many things are faster
and easier in the GUI, experienced users often use a combination of command line text and GUI button operations.

The discussion of the Graphical User Interface and its features is based on the basic windows contained within the CUBIT
GUI Application Window. These are outlined in the subtopics listed above.

A full graphical user interface (GUI) with the standard look and feel consistent with major platforms is available on all
supported Cubit platforms. The GUI version can improve productivity, making new users aware of the wide range of
CUBIT capabilities, and freeing new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from one environment to the other.

CUBIT Application Window

The default CUBIT Application Window is shown in the following image.

15

CUBIT 11.0 User Documentation

— Drop Down Menus

Fis B Vs Dnploy Dook Ml

el YEHn P FIT9FILIR ﬁﬂ.&@mu e elep e+ —-HAD

i@ ®|® ¥ — Toolbars — a "'“4 |
If---='-- o - ?' EL L
[smain e braby clered wenhi by - |
St e e 3o |+
carhig T dip riues [nge
\mpest o pively seemciey .I_ﬂltl F |—|ﬁ
w : : E ﬂ| 3@
] Graphics Window
Baih ihe o B, =|
¥l the sy R —— .
Dl v becririol ity ¢ ol vty 71
Eoset Pen maphy ¥ sighi |
Power e
2 Tools 4]
. FWLI_'AI.BJ.H.IHLW
Tt b b o | DEM
Command
o T Panels
M:'h'\.'_u\-‘h LRI
& R B
12 T— S Command Line
|Propenies Page
I
. | Comveed 4 By 4 Hobgy
b BTy L.] T s PR Ay s g ey |_3]

Figure 1. The CUBIT Application Window
Graphics Window- The current model will be displayed here. Graphical picking and view transformations are done here.
Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool, and meshing quality tool

Property Editor - The Property Editor lists attributes of the current entity selection. Some of these properties can be
edited from the window.

Command Panel - Most Cubit commands are available through the command panels. The panels are arranged
topologically, by mode.

Command Line Workspace - The command line workspace contains both the cubit command and error windows. The
command window is used to enter cubit commands and view the output. The error window is used to view cubit errors.

Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and other functionality is
available in the pull-down menus.

Toolbars - The most commonly used features are available by clicking toolbar icons.

Context Sensitive Help in the GUI

The Graphical User Interface has a context-sensitive help system. To obtain help using a specific window or control panel,
press F1 when the focus is in the desired window. It may be necessary to click inside a text box to switch focus to a
particular window. If no context specific help is available, it will open the cubit help documentation where you can search
for a particular topic.

Customizing the Application Window

All windows in the CUBIT Application can be Floated or Docked. In the default configuration, all windows are docked.
When a window is docked the user can click on the area indicated below.

16

CUBIT 11.0 User Documentation

CTIBIT= |

4——— Click and drag from here

Y Command A Ermor A Histoy

Figure 2. A docked window. Click and drag to float.

By dragging with the left mouse button held down, the window will be un-docked from the Application Window. Dragging
the window to another location on the Application Window and releasing the mouse button will cause it to dock again in a
new location. The bounding box of the window will automatically change to fit the dimensions of the window as it is
dragged. Releasing the mouse button while the window is not near an edge will cause the window to Float. To stop the
window from automatically docking, hold the CONTROL key down while dragging.

17

CUBIT 11.0 User Documentation

Control Panel
tode - Geometmy

EY:
=

E ntity - Walume
Action - Create
5 &

| Brick
Brick Dimenzions
¥ (width] |10
v [height] |
Z [depth] |

4

Floating Window

Figure 3. A Floating Window

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the title bar of the window and
dragging it to its new docked location.

Note: Double clicking on the title bar of an floating window will cause the window to redock in its last docked position.

18

CUBIT 11.0 User Documentation

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

Command Panels

The Command Panels provide a graphical means of accessing almost all of the CUBIT functionality. The main CUBIT
Command Panel is divided into six modes. Each of these modes pertains to a major component of the CUBIT application.
This documentation is designed to provide information on interaction with the GUI and to provide links to documentation
about every feature that can be accessed from the GUI. Follow the links as you would on the GUI to access help about
each command. To view information about each of the tools in the Control Panel select the icon on the image below.

Meshing
Arcess to boundary
Access to mesh o ;
; condition commands Analysis Setup .
creation and Access to mesh Fost Processing

modification
Commands

Arcess to external
post-processing
safteeare
Gearnetry Control Panal

Arcess to geametry
related commands

Figure 1. The CUBIT Control Panel

Modes

Geometry
Meshing

Material Properties
Analyis Setup
Post Processing

A brief description of the functionality of the Control Panel window, along with a graphical overview to the GUI widgets
follows.

Control Panel Functionality

Graphical Overview to GUI

19

CUBIT 11.0 User Documentation

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by task. All of the geometry
related tasks, for instance, can be found under the Geometry mode. When a mode is selected, a second row of buttons
becomes available. The second row of buttons shown depends on the selected mode. For example, if Geometry,
Meshing, or Materials and BCs is selected, the second button row will show entity types. Entities are those specific to the
mode.

Geometry entities include Volumes, Surfaces, Curves, Vertices, and Groups.

Meshing entities include Volumes, Surfaces, Curves, Vertices, Groups, Hexes, Tets, Quads, Tris, Bars, and
Nodes.

. Materials and BCs entities include Element Blocks, Sidesets, and Nodesets.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity. Rather, the buttons show
specific capabilities.

The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The following shows an example
of Geometry/Volume actions.

Control Panel E
—Mode - Geometry

393D

—E ity

Qo x|

Selecting an Action will display a command panel. The Geometry/Volume/Create command panel is shown below.

20

CUBIT 11.0 User Documentation

Control Panel B

—Mode - Geamety

392D
a

: Entitj;l-';xﬁl:;lﬁme
Qo+
i=| 5|

Action - Create
o A
B¢

| Brick -l

-Brick Dimensions
¥ [width] |10
' [height] |
Z [depth) |

i' Apply

L

X

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options are selected using
checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI widgets. Each command panel includes an
Apply button. Pressing the Apply button will generate a command to Cubit. Nothing happens until and unless the Apply
button is pressed.

Note: The edit fields are free form, which means the user may enter any valid string into the
fields. Any string that is valid for the command line is valid for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed over a blank portion of the
command panel, the user may right-click to select Reset Data which will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric IDs, required for the current command, can be entered. IDs can
be entered in several ways:

Simple Keyboard entry

ID numbers can be entered directly in the field. Each ID must be separated with a space. Select the field first before
typing.

Graphical selection
IDs can be entered automatically by selecting entities directly in the Graphics Window. The current entity available for
selection is based on the current entity selection mode. In some cases, not all entities of the current entity selection mode

will be available for picking. The program may automatically filter the applicable entities based on the context of the
current command

Geometry Tree selection

21

CUBIT 11.0 User Documentation

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To select multiple entities use
the <ctrl> key.

Ranges
A range of IDs may be typed into the field. For example:

1to5
will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and except can also be used. Any
range that can be entered directly on a CUBIT command line can also be used in the ID input field. See Command Line
Entity Specification for a description of the syntax.
As Part of Other Entities

Syntax can be entered in the ID Input field that will specify an entity based upon its topological relationship to other
entities For example, if a Vertex Selection Type Button was highlighted, entering

insurfl

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of syntax rules for specifying
entities based upon topology relationships. See Command Line Entity Specification for a description.

In Groups

Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex Selection Type Button is
highlighted, entering:

in picked
will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped

Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an ID Input Field, the following menu options will appear:

Done Selecting - Enters current selection and removes cursor from selection window
Select Other - Displays selection dialog

Select All - Selects all available entities and puts "select all" in input window
Highlight - Highlight the current selection

Zoom To - Zooms to current entity in the selection field within the graphics window
Rotate About - Change center of rotation to the center of selected entity

Draw - Draws the entities listed in the input field within the graphics window

Isolate - Turns visibility off for all entities other than the selected entities. Similar to draw command, but
entities remain hidden with a graphics refresh. Select All Visible in the graphics window to turn visibility back
on.

Visibility Off - Removes the current entity from the input window and hides it on the graphics screen

Measure - Displays a sub menu of choices. Replaces the selected entity(s) in the ID Input Field with the item
selected from the menu.

Mesh - Mesh the listed entities using either an assigned scheme or a default scheme where none is assigned
Delete Mesh - Deletes mesh on all entities listed in the input window
Reset Entity - rehighlights the entities listed in the input field within the graphics window

List Info - Displays a sub menu of choices including basic, geometry, and mesh. Selecting the basic option will
list schemes, visibility, and interval assignments. The geometry option will add information about the geometry
and geometry engine. The mesh option will list information about mesh entities.

Delete - Deletes the current geometric object in the input window.

22

CUBIT 11.0 User Documentation

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed in parenthesis { } will be
evaluated when the command is executed. For example:

{10%0.02}

is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including mathematical functions and boolean
operations. See the section, APREPRO for a description of syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel. A convenience feature
implemented for such panels is an advancing pickwidget feature. Pressing the middle mouse button after selecting an
entity will advance to the next id input field.

Command Panel Overview

This page gives a graphical overview to all of the Control Panel functionality. Buttons are grouped by Modes, Entities, and
Actions as they are on the actual Control Panel. Clicking on a selection will take you to the next submenu as if you were in
the GUI until you reach applicable documentation describing each of the specific commands. To help visual this page, first
level modes are highlighted in green, second level entities in blue, and third level actions in red. If there are additional
menus within the action level, they are also listed.

3|92 =3

Geometry Meshing Materials Analysiz Post-
&Prop. Setup Process.

Geometry ‘ <O // Sk #;

Volume Surface Curve Wertex Group

The Geometry Mode on the Graphical User Interface is divided into groups of actions that apply to each geometric entity.
These entities include: Volume, Surface, Curve, Vertex, and Group. All of the commands that can be accessed from the
Geometry Mode are listed below.

3

Vol : —
olume - = E':i E: 2‘2

Create Modify Transform Prefer- List Delete

2|[o][x]

Imprints Boolean Webout
Mer ge

Create: Brick, Cylinder, Sphere, Prism, Pyramid, Cone, Torus, Copy, Loft, Bounding Surfaces, Sweep
Modify: Reqularize, Separate, Split Periodic, Section, Heal, Simplify , Remove Slivers, Auto Clean
Transform: Align, Move, Reflect, Scale, Rotate

Preferences: Label, Visibility, Color

List

23

CUBIT 11.0 User Documentation

Delete
Imprint/Merge: Imprint/Merge, Tolerant Imprint, Tolerant Surface Imprint, Unmerge
Booleans: Unite, Subtract, Intersect.

Webcut: Chop, Plane, Plane Vertex, Plane Surface, Plane Normal to Curve (near vertex), Plane Normal to
Curve (vertex), Tool, Sheet, Sheet Extended from Surface, Sweep Curve, Sweep Surface, Cylinder Radius,
Loop

<

Surf 2 =
urface s' B E‘-*i 5= 22 E|

Create Modify Transform Prefer- List Delete Merge
RMCes

(] Create: Vertex List, Bounding Curves, Copy, Extended Surface, Planar Surface, Net Surface, Offset, Skin
Curve, Sweep, Midsurface

e Modify: Regularize, Split, Composite, Partition, Tweak, Remove, Collapse, Simplify
e Transform: Move, Reflect, Rotate, Scale.

e Preferences: Label, Visibility, Color

e List

® Delete

® Merge

e N ENE BB

Create Modify Transform Prefer- L
ENCes

=t Delete Merge

e Create: Straight, Spline, From Curves, Offset, Arc, Combine, Copy, Onto Curve, Project, Arc or Circle
® Modify: Reqularize, Composite, Partition, Tweak, Split, Trim, Blend/Chamfer, Collapse
e Transform: Move, Reflect, Rotate, Scale.
e Preferences: Label, Visibility, Color
e List
® Delete
e Merge
b o

Vertex w' ﬂ EI EE ﬂ

Creste Modify Merge Prefer- List Delete
RMCES

e Create: Coordinates, Arc Center, On Curve, At Intersection, Copy(create on vertex), Picking
e Modify: Move, Regularize, Collapse Angle, Tweak

24

CUBIT 11.0 User Documentation

. Preferences: Label, Visibility, Color

Groups @ K

Manage Webcut
Groups

Manage Groups: Create/Add, List, Delete/Remove

Webcut: Plane, Plane Vertex, Plane Surface, Plane Normal to Curve (near vertex) , Plane Normal to Curve
(vertex), Tool, Sheet, Sheet Extended from Surface, Cylinder Radius, Loop

Meshingg .@ {(‘ Y @

Yaolume Surface Curve Vetex Groups

BB E A =]+

He:x Tet Cad Tri Bar Mode

The Meshing Control Panel contains all of the mesh creation and modification commands. It is divided by geometric and
mesh entities.

e R B E N E

g Imterval Mesh Qualty Smooth Copyd Delete Refine Renumber
forph

. Intervals:
0 Interval Functions: Constant Size, Interval, Auto, Geometry-adaptive
. Mesh:
O Schemes: Map, Submap, Sweep, Tetmesh, TetPrimitive, Sphere, Polyhedron, Automatically
Calculate.
e Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Robinson, Traditional, Aspect Ratio Bet, Aspect Ratio Gam,
Aspect Ratio, Condition No., Diagonal Ratio, Dimension, Distortion, Element Volume, Jacobian,
Relative Size, Scaled Jacobian, Shape and Size, Shear and Size, Shear, Skew, Stretch, Taper,

Warpage
O Options: Filter, Draw, List, Scope

Smooth: Laplacian, Smart Laplacian, Conditon No, Equipotential, Untangle,Mean Ratio
Copy/Morph

Delete

Refine

Renumber

25

CUBIT 11.0 User Documentation

@

Surf - -
TlE a2 @] R[]

Irterval Mesh Qualty Smooth Copyd Delete Refine Renumber

= | 8

Control - Adjust
Skewy Boundary

(] Intervals:
0 Interval Functions: Constant Size, Interval, Auto, Geometry-adaptive
. Mesh:
O Schemes: Map, Submap, Pave, TriMesh, Submap, TriPrimitive, Circle, Hole, Mirror, Polyhedron,
TriDelaunay, Automatically Calculate.
e Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Robinson, Traditional, Aspect Ratio, Condition No., Distortion,

Element Area, Jacobian, Max Angle, Min Angle, Relative Size, Scaled Jacobian, Shape and Size,
Shear and Size, Shear, Skew, Stretch, Taper, Warpage
O Options: Filter, Draw, List, Scope

Smooth: Centroid Area, Laplacian, Smart Laplacian, Conditon No, Untangle, Winslow, Mean Ratio

Copy/Morph

Delete

Refine

Renumber

Control Skew: Control Skew, Delete Skew Control

Adjust Boundary

“e w2 (@] x]E]]=

Mesh Smocth Copyl Delete Refine Renumber
Morph

. Intervals:
0 Interval Functions: Constant Size, Interval, Auto

(] Mesh:
0 Mesh Functions: Equal, Bias, Curvature, PinPoint, Stretch, Featuresize

Smooth: Laplacian
Copy/Morph
Delete

Refine

Renumber

26

CUBIT 11.0 User Documentation

Vertex h a_ H

Mesh Delste Refine

Hex

S IRANEA IR

Interval WMesh Qualty Smooth Delete Manaoe

Groups
Intervals:
0 Interval Functions: Depends on entities in group
Mesh:
0 Schemes: Depends on entities in group
Quality:

0 Metrics: Shape, Algebraic, Allmetrics, Robinson, Traditional, Aspect Ratio Bet, Aspect Ratio Gam,
Aspect Ratio, Condition No., Diagonal Ratio, Dimension, Element Area, Element Volume, Jacobian,
Max Angle, Min Angle, Relative Size, Scaled Jacobian, Shape and Size, Shear and Size, Shear,
Skew, Stretch, Taper, Warpage
O Options: Filter, Draw, List, Scope
Smooth: Depends on entities in group
Delete Mesh
Manage Groups: Create/Add, List, Delete/Remove

CHRAIEAIR AL MEE
Create Qualty Smooth Delete Refine Renumber
Create
Smooth
Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Robinson, Traditional, Aspect Ratio, Condition No., Diagonal
Ratio, Dimension, Distortion, Element Volume, Jacobian, Relative Size, Scaled Jacobian, Shape and
Size, Shear and Size, Shear, Skew, Stretch, Taper, Warpage
O Options: Filter, Draw, List, Scope
Delete
Refine
Renumber

27

CUBIT 11.0 User Documentation

" lallelle||x]|H]|=

Create Qualty =mooth Delete Refine Renumber

Create
Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Traditional, Aspecct Ratio Bet, Aspect Ratio Gam, Condition
No., Distortion, Element Volume, Jacobian, Relative Size, Scaled Jacobian, Shape and Size
O Options: Filter, Draw, List, Scope

(] Smooth

(] Delete

. Refine

. Renumber
Quad

CHIRAIRAG NEE

Create Guality Delete Refine Renumber

Create
Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Robinson, Traditional, Aspect Ratio, Condition No., Distortion,
Element Area, Jacobian, Max Angle, Min Angle, Relative Size, Scaled Jacobian, Shape and Size,
Shear and Size, Shear, Skew, Stretch, Taper, Warpage
O Options: Filter, Draw, List, Scope
Delete
Refine
Renumber

A
Triangle | ..
CHEAEANE N

Create Qualty Delete Refine Renumber

Create
Quality:
0 Metrics: Shape, Algebraic, Allmetrics, Traditional, Condition No.,Distortion Element Area, Jacobian,
Max Angle, Min Angle, Relative Size, Shape and Size
O Options: Filter, Draw, List, Scope
Delete
Refine
. Renumber

28

CUBIT 11.0 User Documentation

Bar | ..
T lallel |||

Create Delete Refine Renumber

(] Create
(] Delete
(] Refine
(] Renumber
e UG HEHRRIE
100 O T
Creaste Delete Refine Renumber Move Merge
Mode Mode

Create
Delete
Refine
Renumber
Move Node

Merge Node

gl'l:serials 5 % @ ﬁ

Properties

Manage Manage Manage Delete
Exodus Exoduz Exodus Exodus
Modesets Sidesetz Blocks Ertities

The Materials and Properties command panel contains buttons for creating, editing, and deleting exodus nodesets,
sidesets, and blocks. Note: The Add Nodeset, Sideset and Block Panels will automatically insert the next available

integer for the default ID.

Manage Exodus Nodeset

e Add, Color, Draw

o

e Add, Patch, Color, Draw

@

Manage Exodus Sidesets

Manage Exodus Blocks

e Add, Color, Element Type, Attribute, Attribute by Index, Create Beams

29

CUBIT 11.0 User Documentation

Delete Exodus Entities

(] Nodesets and Sidesets, Blocks

Analysis @g Eﬂ
Setup
Export Filter Failed
Mezh Elements

The Analysis Setup Menu controls export mesh commands and quality filters.

E Export Mesh: Genesis, Abaqus, Ansys, I-DEAS Universal, NASTRAN BDF, Patran, LS-DYNA

Filter Failed Elements

a8

Post Processing

The Post-Processing button is used to link in external post-processing components for visualization of results. You must

first set the path to the post-processing software in the Tools-Option dialog box.

Graphics Window

(47 Cubrig 1002

Fin B Ves Chole Took Hel

DE NEEE Fe D
B e F o 4 =T AR

G9TFALOE 6,6 ¢ HMN L
=

i W
Ful T
L :thl:ln
Pasform Action = 5 —
: A— CUBIT gaphics talarance angle 10
h - -’ R Updseng graghics facets
[Fopery e CUBIT=

_Cosimand 4 Enor /, Hisice

b it U Tuatiawirdts Al StansanbaliaMy Dotmsnts anorted Giirestey Fies

Figure 1. Graphics Window

30

Graphocs Window

=1

L7

CUBIT 11.0 User Documentation

The graphics window is used to view and select entities. Select one of the options below:

View Navigation in the GUI

Selecting Entities in the GUI

Key Press Commands for the GUI

Right Click Commands for the GUI Graphics Window
Repositioning Nodes in the GUI

View Navigation in the GUI

The following table summarizes the mouse-based view navigation operations in the GUI. (See Mouse-Based Navigation
for the command line version). There are two different default paradigms: Cubit command line and Cubit GUI. The user is
allowed to customize the mouse settings as desired. Mouse settings are modified by accessing the Tools pull-down
menu, then select Options. The Mouse Settings dialog is shown below.

i) Options

E'I":;::: Tools Mouze Bulton Function

-~ General Laft Button Select

"'GFDWE*'!-‘ Defauls Lef Button + Control Mukiple Select

= -H:slw Iaddle Button Tab Off Pickes

| =Lt Fight Buttor, Contesd Menu

i Label Defaults
5. Lapout Left Button + Drag | Rotate |

Lo Cutbit Layout Iiddle Buttan = Dirag | Zaoom ﬂ

- Mezh Detaults

- CETER | Pt Euton < Oy e =!
-~ Post Processor | Mobe; Use Zoom + Control 1o select 3 200m bow |
- Qualty Delaults

| Maote: Mac uzers substibhste "Command' for "Control", |

Ermidate Command Line Beth'ng‘a_J

Figure 1. Mouse Settings Dialog

31

CUBIT 11.0 User Documentation

Rotations

Where the cursor is in the graphics window will dictate how the view will be rotated. If the cursor is outside of an imaginary
circle, shown in Figure 2, the view will be rotated in 2d, around an axis normal to the screen. If it is inside the circle, as in
Figure 3, the rotations will be in 3d, about the current view spin center. The spin center can be changed to any x-y-z
location. The most common way is by zooming to an entity, which changes the spin center to the centroid of that entity.
The "view at" command will change the spin center without zooming:

View at vertex 3

__,-'/-__

oy AcicViewl

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal to the screen

32

CUBIT 11.0 User Documentation

S

T At

Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin center

Zooming

To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in Figure 4. The wheel on a

wheel mouse will also zoom.

33

CUBIT 11.0 User Documentation

<

>

s sciet

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as shown in Figure 5.

34

CUBIT 11.0 User Documentation

2\

N

R —

-.ﬁ; A

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

Selecting Entities in the GUI

Geometry and Mesh Entities can be selected with the left mouse button directly on the graphics window. Before selecting
any entity, however, the correct selection mode must be chosen. This dictates which entity types will be available for
selection in the graphics window. The Select Toolbar, which is located on the right of the graphics window by default, is
used to change the entity selection modes.

Select
Groups
ofEntities gelact Geometry Entities Select Mesh Entities
M N
.~ R -
o @lop vy p 4 p 0t A5
Bodies Yerices Cluad Hex
Elements
Yolumes Cumes Element or Faces Elements
Surfaces MHodes Trianla Tet
Element Elemegnts Elements
Edges orFaces

Figure 1. The Select Toolbar

Figure 1, shows the Select toolbar. Selecting one of the entity selection modes will only permit selection of that particular
entity type within the graphics window. These selections will not override a Pick Widget in the command panel.

35

CUBIT 11.0 User Documentation

If both volumes and surfaces entities are picked on the Select toolbar, a single click will select the surface while a double
click will select the volume.More detailed information on selecting and specifying entities can be found in Entity Selection

and Filtering .

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that entity will become
highlighted. This is called pre-selection and is used as a graphical guide to show which entity will be picked when the
mouse button is clicked.

Graphics pre-selection may slow down your graphics speed for large models. You can disable pre-selection from the
Tools->Options dialog box.

Polygon and Box Select

The polygon/box selection feature allows you to select entities by drawing a box or polygon on the screen. To draw a
polygon or box on the screen press and hold the <CTRL> button* while clicking and dragging the left mouse button. Press
the left mouse to complete the box select. Press either of the other buttons to finish selecting a polygon selection. To
change between the polygon or box method, press the Choose Default Selection mode on the Display toolbar. This button
will open a dialog box that allows you to pick between box and polygon selection modes. This dialog box also contains
options to Select Only Enclosed Entities and Use X-Ray Selection. Checking the Select Only Enclosed Entities will only
select entities that are fully enclosed within the bounding box or polygon. Unchecking this box will also select entities that
are partially enclosed within the bounding box. Checking the Use X-Ray Selection will select entities that are behind other
entities. Unchecking this box will only select entities that are currently visible on the screen. Unchecking the box will only
apply to smoothshade and hiddenline graphics modes.

*Note: For Mac computers use the command (or apple) button for polygon or box select.

Key Press Commands for the GUI

Several commands have a key press shortcut. These commands will be executed with respect to the currently selected
entities; see the following table:

Shortcut Key Command

List information about the current entity to the output window.

i Toggle the visibility of the selected entity (make invisible or visible).

e Echo entity id to command line.
Tab Select the next entity.
m Select the previous entity.
0 Set pick type to vertices.
1 Set pick type to curves.
2 Set pick type to surfaces.
3 Set pick type to volumes.

36

CUBIT 11.0 User Documentation

4
2 Set pick type to mesh faces.

Set pick type to groups.

0 Set pick type to mesh nodes.

1 Set pick type to mesh edges.

3 Set pick type to mesh hexes.

F5 Refresh graphics window

Right Click Commands for the GUI Graphics
Window

Clicking the Right mouse button in the graphics window will bring up a menu. One of two menus will appear, depending
on whether an entity is currently selected.

With Entity Selected

Select Other- Brings up a dialog with alternate entity selections

Zoom To - Zoom to the selected entity

Rotate About - Changes the center of rotation to the centroid of this entity

Draw - Draw the selected entity

Isolate - Turn all but the selected entities invisible

Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an existing boundary
condition, group, or part.

Remove from BC/Group/Part - Opens a dialog box where you can remove the selected entity from an existing
boundary condition, group, or part.

Add to Picked Group - Add this entity to the picked group.

Remove from Picked Group - Remove this entity from the picked group

Visibility Off - Turn selected entities invisible

Measure - Measure distance between two selected entities, or measure the length of a selected curve.
Mesh - Mesh the selected entities

Delete Mesh - Delete the mesh on selected entities (but not interval or scheme information)

Reset Entity - Reset selected entities by deleting mesh and interval information

List Info - Show the menu of additional list commands

Delete - Delete selected entities

Without Entity Selected

Reset Zoom - Reset zoom to original configuration
Refresh- Refresh the graphics display

All Visible - Make all entities visible

Background - Change the background color

Display Options - Opens Options Menu to display options

37

CUBIT 11.0 User Documentation

Repositioning Nodes in the GUI

CUBIT provides the capability to reposition mesh nodes interactively from the graphics window. To use this feature, first
open the "Move Node" command panel on the GUI.

Control Panel X |
taode - Meshing

D ED
r
I=

Qi

= E ritity - Mode

<@
>

% | @

Action - Move Node
'J€- H o}o g}o R

MNode 1D(z] |
—Move Node
v Corstrained to Geometmy

[T Show Quality
Nein
NEWYI
New21

Reset Apply

Figure 1. The Move Node command panel

Figure 1 shows the Move Node panel, which is located under the Mesh-Node panels. The interactive node movement is
only available from this window. When the nodes are selected, the neighboring mesh elements are also highlighted.
Nodes with gray handles can be moved by dragging the nodes in the window. The Constrained to Geometry option will
force the nodes to remain constrained to their parent geometry.

The Show Quality option will graphically display the quality based on a color-coded scale. A color bar will appear on the
screen that shows the various quality values by color.

38

CUBIT 11.0 User Documentation

Figure 2. The Show Quality option

Nodes can be repositioned individually, or in groups, as shown in Figure 2. In this example, the Show Quality option is
selected, displaying the color scale next to the entity. See Mesh Quality Command Syntax for a description of how to
resize and reposition the color bar.

Power Tools

The power tools contain useful tools to help users through the mesh generation process. The newest tool is the Immersive
Topology Environment for Meshing, also known as ITEM. This panel contains a wizard-like environment which guides the
user through the mesh generation process by through a series of panels and diagnostics. The geometry tree tab contains
a heirarchy of all the entities in the model. It includes assembly, boundary condition, groups, and geometry entities. The
geometry tool allows such functionality as drag and drop, and creating new boundary condition, assemblies, or groups. It
has many right-click context menu items as well. The geometry repair and analysis tools contains diagnostics and tools for
analyzing and repairing geometry, although many of these can now be found in the ITEM environment as well. The mesh
quality and meshing power tools help to aid in mesh generation and verification.

39

CUBIT 11.0 User Documentation

Geometry . Mesh
Repair and Meshing gyality
Analysis Tools Tools Tools
Power Tools | II:-II-EM]
Geomet 4 | i " MmEer sive
T r}i“"ﬂ'ﬂ I& E | ? | @: iﬂ Topology
ree p
Full Tree Ervironmenrit
[Mame [Properties far Meshing)
Ii-?-'.'ﬁ:;wrt-iat
f ::’;ﬁ"thlrda'p Conditions
+ wanoups
; ﬁ"-u"ciu'ne:
L]

Figure 1. Power Tools Window

Geometry Tree

Geometry Analysis and Repair Tools

Meshing Tools

Mesh Quality Tools

Immersive Topology Environment for Meshing (ITEM)

To familiarize yourself with the power tools environment (excluding ITEM), we recommend that you try the power tools
tutorial.

Geometry Tree

The geometry tree provides a complete graphical hierarchical representation of the parent child relationship of all
geometric entities. The tree is populated as the model is constructed by Cubit. In addition to showing a hierarchy of
geometric entities, the tree also shows Assembly Data, active Groups, and active Boundary Condition entities.

The tree works directly with the graphics window and picking. Selecting an entity in the tree will select the same entity in
the graphics window. Selecting an entity in the graphics window will highlight the tree entry if that entry is currently visible.
If an entity's visibility is turned off, the icon next to that entity in the geometry tree will disappear.

If the tree entry is not visible the user may press the Find button located at the bottom of the tree. The first occurrence of
the selected entity will be shown on the tree.

Virtual entities have a small (v) after the name to indicate that they are virtual entities.

40

CUBIT 11.0 User Documentation

Tree Yiew =]

N8| @2

Full Tree
M ame | D | Fropertiez
"ﬁ.ﬁ.ssemblies e
—% Boundary Conditions
=/ @PBlocks 1)
Block 100
—jf:{ Modezets (1]
- E Modeset an
L Gidesets (1)
-l s Groups

L group] 2
=l & Y alumnes

=g olume 1 1
+,[|:| Surface 23 29
e Surface 30 30
el Surface 31 N
g Suface 34 34
wp Suface 57 57
e Surface 55 53
wpE Suface 59 54
gl Suface B0 6O
wped Surface BS [v) 65
+ @ Volume 2 i
g Yolume 3 3

[Surface BE EJ

Figure 1. Geometry Tree Window

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing boundary condition sets. To create
blocks, sidesets, or nodesets, see the Materials and Properties menu on the main control panel, or right-click on the
Blocks (parent) label and select Create New Block. Geometric entities or groups can be added to blocks, nodesets, or
sidesets by dragging and dropping inside the tree view window. Assembly data may also be organized in the geometry
tree window through drag and drop.

Picked Group

The current selections in the graphics window can be added to a "picked group" by selecting the "Add to Picked Group"
from the Right click menu. Selections can also be added to the picked group by dragging and dropping onto the group
from the geometry tree window. The picked group can be substituted into any commands that use groups. To remove an
item from the picked group, use the "Remove from Group" option in the right click menu in the geometry tree or from the
graphics window.

41

CUBIT 11.0 User Documentation

38 @2

M arne | 0 | Properties ﬂ
T T EPEOCRE (0]
FiModesets (0]
~BH Sidesats (0]

=1 A Groups

= ipicked
-l Surface 1
[Ij Surface 2
[lj Surface 3
=gl Surface 4

1@ Y olumes

— i L S - -

= o = =

Surface &

|«

Figure 2. Picked Group

Right-Click Menu Functions

42

The geometry tree's context menu is sensitive to the type of item and the number of items selected. Functions that
apply to the item type and number of selected items are available from the context menu.

Zoom To - Available for all geometric entities

Rotate About - Change the center of rotation to the centroid of the entitiy without zooming
Fly-In - Animated zoom feature

Locate - Labels the selected entity in the graphics window

Draw - Draw this entity by itself.

Isolate - Similar to Draw command, but the display will not be refreshed with a graphics reset. To redisplay the
model, select All Visible from the graphics window right-click menu.

Transparency On/Off - Toggles transparency mode

Visibility On/Off - Toggles visibility

Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity in the tree will do the
same thing. This will also work for boundary condition entities (blocks, nodesets and sidesets)

Mesh - Mesh selected entity at current settings.

Delete Mesh - Available for meshed entities

Reset Entity - Deletes mesh, and returns all settings to default values.

Delete - Available when Volumes and Groups are selected.

Create New Assembly/Sub-assembly/Part - You must specify the absolute path to create a new assembly,
sub-assembly or part (e.g. /al/pl). It may also be necessary to refresh the full tree before viewing changes.

Add Selected to Part- Add the selected volume in the graphics window to the selected part on the geometry
tree.

Remove from Metadata - Deletes the selected part or assembly metadata information. An assembly must be
empty to remove it

View Metadata - List metadata in the command line workspace

Rename Metadata - Allows you to rename a part or assembly

Metadata Clean - Removes all parts and assemblies that are not associated with any geometric entities.
Goto Part - Finds the associated metadata part when a volume is selected.

Measure - Available when two entities are selected or 1 curve is selected

Refresh Full Tree - Used to return to main tree

Collapse Tree - Available when entities are selected.

View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh Full Tree option to
return to main tree view.

CUBIT 11.0 User Documentation

View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the main tree view.
Create New Volume - Available when the user right-clicks over the Volumes (parent) label.

Import Geometry - Available when the user right-clicks over the Volumes (parent) label. Opens import dialog.
Create New Group - Available when the user right-clicks over the Groups (parent) label.

Clean Out Group - Available when groups are selected. Removes all entities from group.

Remove from Group - Available when groups are selected. Removes selected entity from the group.

Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window to the chosen block,
nodeset, or sideset in the geometry tree.

e Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics window from the
chosen block, nodeset, or sideset in the geometry tree.

e Create New Block/Sideset/Nodeset - Available when the user right-clicks over the respective Boundary
Conditions (parent) label.

Remove from Block/Sideset/Nodeset - Removes selected entity from the specified block, sideset or nodeset.

Update BC Data - available when the user right-clicks over the Boundary Conditions (parent) label. NOTE:
Boundary Condition data is not currently automatically updated in the tree. To ensure the user is viewing the
most current BC data, select Update BC Data.

e Other Views - Additional tree views including non-hierarchical views, sweep surface lists, and metadata part
name and metadata part description lists.

e List Info - List information about selected entity in the output window.

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry tab. In many cases, a model will
fail to mesh because of problems with the geometry. Since the range of geometry problems is so wide, and because
these problems can be hard to diagnose, the Geometry Power Tool has several built-in tools designed to analyze and
repair these problems. The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing capability. It also contains
a powerful toolkit of geometry modification methods to fix these problems. All of the common geometry clean-up tools are
now in one place on the GUI menu. In addition, there is a window that lists results from geometry analysis in a tree format,
making it easier to find, diagnose, and solve geometry problems. And CUBIT will save your settings, so you can run the
same diagnostic tests each time you use the geometry power tools.

43

CUBIT 11.0 User Documentation

Power Tools
a0 |

3 & @R
&9 Volume ID[s] |all

Shortest Edge Length]1

[T Show Options

ﬂ Analyze

Enfity ID | Entity Data

Feal-

agsme 2|
Ry

PRk [l

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to diagnose potential problems for mesh
generation. To display a list of tests, click on the Show Options check box. By default all tests are selected and run on
geometry. Some tests may not apply to specific geometry, or may only need to be run once per geometry (i.e. bad
geometry definition test). Clicking on the box by each test will deselect it.

The geometry analysis inputs and tests are summarized below:

Shortest Edge Length -The shortest edge length is a value that is input by the user. It determines the minimum allowable
threshold for small features. It is used as an input to test for small curves, small surfaces, small volumes and close loops.
The default value for this is 1. This value should be changed relative to the size of the model. In a very broad sense, it
represents a desired mesh edge length. Curves and surfaces which are smaller than this size, and which may be
troublesome to mesh with the desired granularity, will be flagged and they can be removed or modified.

Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the user to determine the
definition of small or large angles. The default values are set at 350 degrees for the large angle and 10 degrees for the
small angle. These values are used to test for angles between curves, surfaces, and at tangential intersections.

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and at tangential
intersections. The test will only look for curves or surfaces that are adjacent.

44

CUBIT 11.0 User Documentation

Tangential Intersection - A tangential intersection is formed when two parallel surfaces share an
edge and have a 180 degree angle between them. The tangential intersection test is looking for the
condition where two surfaces that meet tangentially share a common edge, and each of the surfaces
has another edge which resides on a third face and forms a small angle as shown in the following
example. Surface 1 and Surface 2 are tangential to each other and share a common edge. Both
Surface 1 and 2 have another edge which resides on Surface 3 and forms a small angle at the vertex
common to all three surfaces.

Figure 2. Tangential Intersection

Overlap Check - The overlap tests look for geometry that are either overlapping or coincident (exactly on top of each
other). Keep in mind that some of these problems may disappear with imprinting and merging.

Small Features Check - Small features may be necessary and desirable in a model, but many times they are the result of
poor geometry translation or import, or they may just not be important to the analysis. The small features tests look for
small curves, small surfaces, and small volumes. These tests rely on the user-defined short edge length parameter. Small
curves, including zero-length curves such as hardpoints, are compared directly against the defined parameter, and
flagged if they less than or equal to the given parameter. Small surfaces and volumes, on the other hand, are compared
against their hydraulic radius. For surfaces the hydraulic radius is 4*surface_area/perimeter. For volumes the hydraulic
radius is 6*volume/surface_area.

Bad Geometry Definition Check - CUBIT uses third party libraries, such as ACIS from Spatial, Inc., or Granite from
Parametric Technology Corporation, for much of its geometric modeling capabilities. The bad geometry definition check
calls internal validation routines in these libraries, when available, to check for errors in geometry definition. If the third
party library does not provide validation capabilities, this check will not return anything. Note: ACIS and Granite are
trademarks of Spatial and PTC, respectively.

Blend Surface Check - A blend surface is a transition surface between two orthogonal planes, such as a fillet. The blend
surface check identifies the surfaces which meet this criterion. Many times these surfaces are candidates for the split
surface command or the remove surface command. The split surface command allows you to split these blend surfaces
into two surfaces, making it easier to mesh the volume. The remove surface command removes the surface and extends
the adjoining surfaces until they intersect.

Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single surface for which the
shortest distance between loops is less than a user specified tolerance. The tolerance for close loops is the square of the
shortest edge length parameter. Close loops are common around holes and fillets, and are usually found where one loop
is entirely within the other loop. These surfaces are often candidates for removal, or tweaking.

Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that can be merged. Pressing
the "Merge all" button on the Power Tools will automatically merge all entities flagged by the merge test.

45

CUBIT 11.0 User Documentation

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable command panels on the
Control Panel. You must press the Apply button on the Control Panel to execute the command.

@Split Surface Button

The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces, for example, where
splitting a surface may facilitate sweeping. To select a surface for splitting, click on the surface in the tree view. To select
multiple surfaces in the window, hold the CTRL key* while selecting surfaces (surfaces must be attached to each other).
Then press the split surface button to bring up the Control Panel window with the ids of selected surfaces in the text input
window. The split surface menu is located on the Control Panel under Geometry-Surface-Modify. You must press the
Apply button for the command to be executed. You can also bring up the Split Surface menu by selecting surfaces in the
tree view and selecting Split from the right click menu.

*Note: For Mac computers, use the command key (or apple key) to select multiple entities

The healing function in CUBIT is used to improve ACIS geometry that has been corrupted during file import due to
differences in tolerances, or inherent limitations in the parent system. These errors may include: geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). To heal a volume, select the
volume in the geometry repair tree view. Then press the heal button. You may also press the heal button without a
geometry selected in the window, and enter it later. The Control Panel window will come up under the Geometry-Volume-
Modify option with the selected volume id highlighted. If no entity is selected, or if another entity type is selected, the input
window will be blank. You can also open the healing control panel by selecting Heal from the right click menu in the
geometry power tools window.

The tweak command is used to eliminate gaps between entities or simplify geometry. The tweaking commands modify
geometry by offsetting, replacing, or removing surfaces, and extending attached surfaces to fill in the gaps. Tweaking can
be applied to surfaces, and it can be applied to curves with a valence no more than 2 at each vertex. It can also be
applied to some vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify control
panel will appear with the selected surface id in the input window.

Heal Button

Tweak Button

Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge between two orthogonal
surfaces. The curve option is located on the Geometry-Curve-Modify panel under the Blend/Chamfer pull-down option.

Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted corner between three
orthogonal surfaces. The vertex option is located on the Geometry-Vertex-Modify panel under the Tweak pull-down menu.

Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any other curve will cause
the Geometry-Surface-Modify menu to appear.

@‘Merge Button

The merge command is used to merge coincident surfaces, curves, and vertices into a single entity to ensure that mesh
topology is identical at intersections. Unlike other buttons on the geometry repair panel, the merge button acts as an
"Apply" button itself. All geometry that is listed under "mergeable entities" will be merged.

R

The remove button is used to simplify geometry by removing unnecessary features. To use the remove feature, click on
the surface(s) in the Tree View. Right click and select the Remove Option, or click the Remove icon on the toolbar. The
Control Geometry-Surface-Madify control panel will appear, with the surface ids in the input window. The Remove control
panel can also be accessed from the right-click menu in the Geometry Power Tools window. Select options and press

apply.

Remove Button

46

CUBIT 11.0 User Documentation

@Regularize Entity Button

The regularize button is used to remove unnecessary topology. Regularizing an entity will essentially undo an imprint
command.

5

The remove slivers button is used to remove surfaces with less than a specified surface area. When ACIS removes a
surface it extends the adjoining surfaces and reintersects them to fill the gap. If it is not possible to extend the surfaces or
if the geometry is bad the command will fail.

o
ﬂComposite Button

The composite button is used to combine adjacent surfaces or curves together using virtual geometry . Virtual geometry is
a geometry module built on top of the ACIS representation. Surfaces may be composited to simplify geometry in order to
facilitate sweeping and mapping algorithms by removing constraints on node placement. It is important to note that solid
model operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual geometry. Both
curves and surfaces may be composited.

u’ Collapse Angle Button

The collapse angle button uses virtual geometry to collapse small angles. This is accomplished by partitioning and
compositing surfaces in a way so that the small angle gets merged into a larger angle. Pressing the collapse button on the
geometry power tools will open the collapse menu under Geometry-Vertex-Modify control panel. This panel can also be
opened by selecting Collapse from the right click menu in the Geometry Tools window.

5

Pressing this button will open the collapse surface panel on the main control panel. The collapse surface function uses
virtual geometry to eliminate small surfaces on the model to improve mesh quality. It is most useful for blend surfaces.

i
mCollapse Curve Button

Pressing this button will open the collapse curve panel on the main control panel. The collapse curve command is used to
eliminate small curves using virtual geometry.

Remove Slivers

Collapse Surface Button

=

Reset Graphics Button

The reset graphics button will refresh the graphics window display.

Right Click Menu

The following right click menu is available from the geometry power tools. Specific options depend on the type of entity
selected.

Zoom To- Zoom to selected entity in the graphics window

Reset Zoom - Reset graphics window zoom

Fly-in - Animated zoom

Locate - Labels the selected entities in the graphics window. Refresh screen to hide.
Draw - Displays only selected entities by themselves.

Draw with Neighbors - Displays only selected entities with all attached neighbors
Clear Highlights - Clears all highlighted entities and reset graphics

Reset Graphics - Reset graphics window

Tweak - Opens the tweak menu in the main control panel

47

CUBIT 11.0 User Documentation

Remove - Opens the remove menu in the main control panel

Remove all - Available when the clicking on an item in the "small surfaces" list. Opens the remove menu in the
main control panel with all surfaces in the category as inputs. The individual option will be selected on the panel
by default.

® Split - Opens the split surface or split curve menu in the main control panel, depending on the type of entity
selected.

Merge Selected - Merge selected entity from mergeable entities list

Merge All - Merge all entities listed in the mergeable entities list

(Virtual) Composite - Opens the composite menu in the main control panel

(Virtual) Collapse - Opens the collapse angle menu the main control panel

Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

Analyze Geometry - Similar to pushing the Analyze button.
Highlight All - Highlight all members of this category.
Draw All - Display only members of this category.

Locate All - Label all members of this category.

Meshing Tools

The meshing power tool provides a tool for determining whether a geometry can be meshed using autoscheme, or if it
requires its scheme to be set explicitly. This tool is designed to help guide users through geometry decomposition process
by providing a convenient way to see which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools
Entity Specification- The meshing power tool works for volumes or surfaces.

Options Button - Opens the Tools>Options dialog to change the visualization colors of surface schemes for the
meshing tool

Analyze Button - The Analyze button issues the autoscheme command for all selected volumes and surfaces.

Output Tree - The output from the meshing tool is displayed in tree format. Geometry is divided into "Scheme Set" and
"Scheme Not Set" divisions. The geometry is listed under these nodes. If autoscheme was successful, its assigned
scheme is also displayed.

Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics window. Green means that
they are currently meshable using the autoscheme. Red means that they require their scheme to be set explicitly. Turning
this capability off will return the volumes and surfaces to their original colors.

Meshing Tools Buttons - Several meshing tools are available to the user from this window. Depending on the entity
selected, these are also available from the right-click context menu, and they are described below.

Right Click Context Menu

Zoom To - Zoom in on this element in the graphics window
Draw - Draw this entity by itself in the graphics window

Locate - Locates and labels entity in the graphics window
Rotate About - Issues Rotate about command for selected entity
Visibility On/Off - Toggle visibility

Reset Graphics- Reset graphics display

Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can set interval sizes for the
selected geometry

® Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set a scheme for the
selected entities

® Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh panel to set vertex
types.

48

CUBIT 11.0 User Documentation

e Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you have entities selected in
the tree window it will input them to the imprint/merge command.

e Webcut - Opens the Geometry/Volume/Webcut panel on the control panel. If a volume is selected in the
meshing tool window it will input it in the webcut panel.

® Color Surfaces - Color surfaces based on their schemes. You can change the default colors by selecting the
Options button.

Restore Colors - Restores colors on selected entity or entity type

Mesh - Meshes the selected entities (bypassing control panel)

Delete Mesh - Deletes the mesh on selected entities

Unmerge - Unmerges selected entities

View Descendants - Opens a list of child entities and their meshing schemes. Press Analyze to return.

View Ancestors- Opens a list of parent entities and their meshing schemes. Press Analyze to return.

View Neighbors- Opens a list of bordering entities and their meshing schemes. Press Analyze to return.

Mesh Quality Tools

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh Quality Tool works on meshed
entities to analyze mesh quality based on selected metrics. Output from the mesh quality analysis can be visualized using
color-coded scales. The mesh quality tool also contains tools to improve mesh quality including smoothing, refinement,
node merging, mesh validation, deleting mesh elements, and repositioning nodes.

-) ‘@ 2 ‘
&@ | Volume =] Jall

@ Elpticuns| WizLal | Analyze |

Poor Elements

Results | Quality I
=/ Shape
tMobad elements found

ga@fog}{)
|| X

Figure 1. Mesh Quality Tools

2|

Entity Type - The mesh quality tools can only be applied to mesh entities including volumes, surfaces, hexahedra,
quadrilaterals, triangles, or tetrahedra.

Help Button - Opens context specific help for this topic.
Options Button - Clicking on this button will show the Tools>Option menu dialog that allows users to manually enter

metric range settings. The settings are persistent between sessions. For a description of quality metrics and default
ranges click on one of the following links:

49

CUBIT 11.0 User Documentation

Metrics for Hexahedral Elements
Metrics for Quadrilateral Elements
Metrics for Tetrahedral Elements
Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel specific to the entity selected.
To visualize elements in the graphics window based on a color-coded quality scale, you must select the entities to
visualize and check the "Display Graphical Summary" check box. Once that box is selected, you must also make sure the
"Draw Mesh Elements" option is selected. Then press the Apply button

Analyze Button - This button starts the quality processing based on the metrics/filters selected.

Output Window/Tree - The failed elements are shown in the tree under the heading "Poor Elements". For each
metric/filter the output will be listed in a tree format with the following nodes.

1. The top node on the tree is the name of the metric.
2. The next node under is the owning volume or surface when volumes or surfaces are analyzed.
3. The next node will be categories or groups of elements. Possible categories are:
0 All Above Threshold - represents all mesh elements above the quality threshold upper range
0 All Below Threshold - represents all mesh elements below the quality threshold lower range
O Top "n" - This will expand into a list, up to 50 elements long, of the worst offending elements above
the upper threshold range.
O Bottom "n" - This will expand into a list, up to 50 elements long, of the worst offending elements below
the lower threshold range.
4. Atthe lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way items are sorted, click on the
headings. The right-click or context menu will show various remedies depending on what is selected. Performing an
operation on a parent node will perform the same operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may use to improve mesh quality
and include.

Smooth Button - Opens the Mesh>Entity>Smooth panel

Refine Button - Opens the Mesh>Entity>Refine panel

Move Node - Opens the Mesh>Node>Move Node panel

Merge Node - Opens the Mesh>Node>Merge Node panel

Delete Mesh Element - Deletes selected mesh entity

Validate Mesh - Issues the validate mesh command

Check Coincident Nodes - Issues the check coincident nodes command.
Refresh Graphics

Right-Click Context Menu Items

e Draw - issues a draw command for any tree node below the metric name.
Color Code - Issues a 'quality draw mesh' command for any tree node below the metric name

Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will draw and label selected
entities in the graphics window.

Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an animated zoom feature.
Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri

Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri

Vis on/off - Issues visibility on/off for volume/surface

Smooth - Issues generic smooth command for volume/surface/hex/tet

Smooth Surface Parent - issues a smooth surface command for the surface parents of selected quads and
tris.

Delete Mesh - issues delete mesh propagate command for vol/surf

50

CUBIT 11.0 User Documentation

Delete Elements - issues delete element command for mesh entities in all categories except ‘all’
Validate mesh - validates selected volume or surface
Check Coincident Nodes - checks for coincident nodes on volume or surface

Smooth Panel - brings up the correct smooth panel depending on what's selected

Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for selected quads and tris
Merge Node Panel - brings up the panel to merge nodes
Move Node Panel - brings up the panel to move nodes
Reset Graphics - resets the display

Property Editor

1 Cubi 10.0b

The Property Editor is a window that lists properties about the current entity selection. Some of the properties, like CUBIT
ID, entity type, or geometry engine, are listed for reference only. Other attributes, like name, or mesh intervals, color,
mesh scheme, or smooth scheme can be edited from the window. The Property Editor is located on the left panel in the
GUL. The highlighted entity/entities in the graphics window are listed in the property editor window. The Property Editor
also lists information about selected mesh entities, boundary conditions, and assemblies. Selecting an object from the
Tree View will also open the object in the property editor.

Fle Edt Wew Duplyy Took Help
DS Nelsil P 99992 92RQSH W
g a@d s o 4+ - A R D
“H|al@|e| Mot Gty
Full Tega [Ig ﬁ& ﬁ a
P I] " Erity - Volime
93 Anremties < P ﬁ* | % “
s P
v RILCIEERS
AR
: S =l
H Brck Dimencarg
Property Editor o i
Pesom Acten
PREJE S i
Progesty |wu - :{_;
B Gersral
Id i
Typs Wekry ingsdriver, gac” LI
o S el g ui
Bl Geometry ¥ all
Ergre
5 Mackirn] d | k“‘““’ E|
| |

Figure 1. Property Editor Window

1
!I Smooth selected entity using the current smoothing scheme

The row of buttons on the top of the editor are shortcuts to common commands. These include:

ii Meshes the selected entity/entities at their current interval and scheme settings

51

CUBIT 11.0 User Documentation

[l
: |
R

2|

Preview mesh intervals on selected entity

Delete mesh on specified entity (do not propagate to lower order entities)

Delete current entity

Reset entity to default settings and delete mesh

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some of the fields cannot be changed,
some can be edited from an input field, and others are edited by selecting from a list, or by opening the corresponding
window from the Control Panel.

If multiple entities are selected, the attributes that are similar to both entities will be shown. Changing an attribute from the
property editor will change that attribute on both entities. If multiple entities are selected the total volume, surface area,
and length of all entities will be shown.

Below is a summary of properties listed for each attribute type.

General Attributes

Entity ID - CUBIT ID for geometry or boundary condition element

Entity Type - Geometric type such as Volume, Surface, Curve, Vertex

Name - Name by which the entity can be referred to from within CUBIT instead of using its ID. The entity name
can be edited from this window.

Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

Geometry Attributes

Is Merged - Returns "Yes" if this entity is merged

Is Virtual - Returns "Yes" if this entity is a virtual entity

Location - Returns the location of specified vertex.

Geometry Engine - ACIS, Granite or Mesh-Based Geometry

Volume - The volume of the specified body

Surface Area - Surface area of selected surface

Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
Length - Length of selected curve

Meshing Attributes

52

Is Meshed - Returns "Yes" if the entity is already meshed

Number of Elements - Similar to "List Totals" command

Intervals - Number of mesh intervals on element. This can be edited from this window. The humber must be an
integer

Interval Size - Interval size for element. Clicking on box will open the interval specification panel on the control
panel. The interval size can also be entered manually in the text box.

Meshed Volume - The meshed volume may be slightly different than the actual element volume due to the
mesh approximation on curved surfaces.

Meshed Area - The meshed area may be slightlty different than the actual surface area due to mesh
approximation on curved edges.

Length of Meshed Edges - Combined total of mesh edge lengths on curve

CUBIT 11.0 User Documentation

Mesh Scheme - The mesh scheme for this entity. This can be changed from the property editor by selecting
from the drop-down list.

Smooth Scheme - The smooth scheme for this entity. This can be changed from the property editor by
selecting from the drop-down list.

Boundary Condition Attributes

ID - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the finite element model.
This value can be edited from the property editor

Name - A user-defined name that is included in the metadata for that object. This value can be edited from the
property editor.

Description - A user-defined description that is included in the metadata for that object. This value can be
edited from the property editor.

Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

Element Type - The finite element type for this block, nodeset, or sideset.
Element Count - The total number of elements for this block or sideset
Node Count - Total number of nodes (available for nodesets only)

Attribute Count and Attributes- The attributes represent material specification data that is associated with the
element block. These values can be changed in the property editor. You can specify up to 10 attributes per
block.

Metadata Attributes

Type - The metadata type: Assembly, Sub-Assembly or Part

Name - The name for the assembly or part. This can be edited from the property window.
Instance - The numeric value associated with the part or assembly

Path - The absolute path of the part or assembly.

Description - The description of the part or assembly. This can be edited from the property editor

Material Description - The name or description of the material of which this part is composed. Applies only to
parts. This can be edited from the property window.

Material Specification - The formal specification number of the material of which this part is composed. This
can be edited from the property window.

File Format - The name of the file system containing the original version of this entity. This can be edited from
the property editor

Units - The unit system of this part or assembly. This can be edited from the property editor

The part name, description and material description are available when the associated volume is selected, and not just
when the part is selected.

Command Line Workspace

CUBEIT= br x 10 ﬂ
Successfully created brick wolume 1
Journaled Command: brick x 10

CUEIT= z‘

Y _Command A 4, Emor # History f

53

CUBIT 11.0 User Documentation

The Command Line Workspace is the interface for command interaction between the user and the CUBIT application.
The user can enter commands into this window as if they were using the command line version of CUBIT. Journaled
commands will be echoed to this screen, even if they were not typed in manually. Thus, if the user wants to know what the
command sequence for a particular action on the GUI is, they can watch for the "Journaled Command:" line to appear. In
addition, this screen will contain important informational and error messages. The command window has the following four
tabs:

1. Command
2. Error

3. History

e Script

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check the "Show Script Tab under
Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of CUBIT. Commands can be
entered directly by typing at the CUBIT> prompt. This window also prints out error messages, informational messages,
and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be active. Activate the command
window by clicking anywhere inside the window. Commands are typed in at the CUBIT> prompt. If you do not remember
the specific command sequence you can type help and the name of the command phrase. The input window will show all
of the commands that contain that word or phrase. Alternatively, if you know how a command starts, but do not remember
all of the options, you can type ? at the end of the command to show all possible command completions. See Command
Syntax for an explanation of command syntax rules.

Repeating Commands
Use the Up and Down arrow keys on the keyboard to recall previously executed commands.

Commands can be repeated in other ways as well.

e Hitting the enter key while the cursor is on a previous command line will copy that command to the current
prompt.

e The command window supports copy and paste for repeating commands.

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there are errors, a warning icon will
appear on the tab. The icon will disappear when you open the window to view errors. The error window only displays the
error output, which can make it easier to find and read the error output. The command that caused the error will be printed
along with the error information. If the command was from a journal file, the file name and number will be printed next to
the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be configured in the options dialog
on the History page. You can re-run the commands in the history window using the context menu. You can also clear the
history using the context menu.

54

CUBIT 11.0 User Documentation

Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a Python script using the
Script tab, start typing at the "%>" prompt. At the end of each line, hit Enter to move to the next line . To execute the
script, press Enter at a blank line. Scripts may also be written in the Journal File Editor.

The interface between cubit and python is the "cubit" object. This object has a method called cmd which takes as an
argument a command string. Thus, the following command in the script window:

cubit.cmd("create brick x 10")

will create a cube with sides 10 units long. The following script is a simple example that illustrates using loops, strings,
and integers in Python.

%>for i in range(4):
.. X=i1*3
.. forjinrange(4):
y=j*3
for k in range(4):
z=k*3
mystr="create vertex x "+str(x)+" y "+str(y)+" z "+str(z)
cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced, even creating customized
windows and toolbars. If you would like more information on advanced scripting with CUBIT, please contact the design
team.

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is floating it can be redocked by
double-clicking the solid blue bar. By default, it will always be redocked in the bottom of the application window. To
change the size of the floating window, click and drag the edge of the window. To change the height of the docked

window, click and drag the top edge or right edge.

Journal File Editor

The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and translate CUBIT journal files

and Python Scripts. To open the journal file editor, select the E icon on the File Tools toolbar, or from the Tools
Menu.

55

CUBIT 11.0 User Documentation

Journal Editor . =10 x|

File Edit Tools

IDSPruKOD > 8B
meitled:

4

Figure 1. The Journal File Editor

The Journal File Editor can be used to create a new Python or Cubit command script. By default, a new journal file will be
in Cubit command syntax. You can change the default in the options dialog. On the "General" options page, under the
Journal Editor heading, you can select the default syntax. You can change the new journal file's syntax using the
translation buttons as well. When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can also play a few
commands at a time. Select the commands you want to play. Then, right click and select the "Play Selected" menu item.

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open menu item to open the file you
want to edit. You still have all the command play options with an existing journal file.

You can import commands entered in the Command Line Workspace. The File > Import menu item contains a list of
available imports. Select the tab you want to import from. Only the current commands will be imported from the command
line. Some of the commands you previously entered might not show up if you have the recommended text trimming turned
on. Text trimming improves the application's performance for speed and memory. It will trim off the oldest text in the
window when a size limit is reached. To get all the command from your current session, make sure that command
journaling is turned on.

The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate between the two forms.
Translating from Python to Cubit commands can cause commands to be lost. The Journal File Editor will warn you when
doing so.

The Journal File editor can be used to edit multiple files at the same time. Each document is displayed in its own tab. The

tab shows the journal file's syntax and name. If you close the Journal File Editor with unsaved data, it will prompt you to
save changes for each of the modified journal files you have open.

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.
NNE XD B Pa®

® New - Creates a new journal file. The new journal file is placed in a new tab.
® Open - Used to select a journal file to open.

56

CUBIT 11.0 User Documentation

Save - Saves the current journal file.

Undo - Undo the last text change.

Redo - Redo the last text change, after Undo.

Cut - Standard text cut operation

Copy - Standard text copy operation

Paste - Standard text paste operation

Play Journal File - Plays the entire journal file

Translate to Python - Translates the current Cubit commands in the journal file to Python scripts.
Translate to Cubit - Translates the current Python script in the journal file to Cubit commands.

Toolbars

The CUBIT toolbars provide an effective way for accessing frequently used commands.

Below is a brief description of each of the available toolbars. To view a description of the function of each tool, hold the
mouse over the tool in the CUBIT Application to display tool tips.

File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Dave - Stare Flay Journal
current model File - Choose a
Mew - Delete and settings to CUBIT journal
e a CUBIT (cub) file to play Fause Journal
and start aver database file File - Pause
execution of a
\ \ currently running

BN N
/

Open - Head a7 Jaurnal Editar - Play ID-less
CUB'T |:.|:L||:|:| Bring |_|F| interac‘tiye ._|I:|Llrr'|a| F||E -
database file text editar for Choose an

running and editing 1D-less CUBIT
CUBIT journal files journal file to play

Figure 1. File Toolbar

Display

Controls the display mode, checkpoint undo, zoom, perspective and polygon selection options in the Graphics Window.

57

CUBIT 11.0 User Documentation

it i . Tngglﬁﬂgde‘gspective
Turnon Operation GD|5pIat3f Display Zoom
- . eametry
Chaa‘;pnﬂ'”t Display Enfities Mesh In Zoom / gﬂglg'e
Modes cale
{ o g O of Ao 2%

Display Tools

Pe STTI9IRIE 2R E ¢ [HM

Wireframe"/ | / \ ¥
Made Transparent Show Redraw Auto

Dotted Mode Composites the Center & G o=
- : i oose Defau

Hidden Hidden golid Smooth Bispley Selection Mode
Line Line Shading

Mode mode Mode

Figure 2. Display Toolbar

Select

Controls the Entity Selection Mode for picking or selecting entities.

Select
Groups
of Entities gelect Geometry Entities Select Mesh Entities
L N
I ™, L T,
o @(op ¢ p r 5t A5
Bodies Yerices Cluad HL}{
Elements
Yolumes Cumes Element ar Faces Elements
Surfaces Modes Triangle Tet
Element Elemegnts Elements
Edges ar Faces

Figure 3. Select Toolbar

Drop Down Menus

The Cubit Drop-Down Menus, located at the top of the Cubit Application Window provide access to capabilities such as
file management, checkpoints, display manipulation, journaling, system setup, component management, window
management, and help.

Cubit (Mac Only)

This menu contains the Preferences dialog box, also called the Options dialog box on other platforms. It also contains the
About Cubit menu and the Quit Cubit option. It is only available on Mac computers.

File

This menu provides common file operations, including importing and exporting of files. A list of recently saved or imported
files is also provided, allowing a quick way to import current or recent work. Non-Mac users can also exit and reset the
program from this menu (These options are found under the Cubit tab for Mac Users).

58

CUBIT 11.0 User Documentation

Edit

This menu only provides a way to enable the Undo feature of the system. If Undo is enabled, one level of Undo is
available to the user.

View

The View Menu lists all available toolbars and windows in the current CUBIT session. Selecting a toolbar or window will
make it visible. Deselecting a toolbar or window will hide it. You can also hide an undocked window or toolbar by clicking
on the small "x" in the upper right corner. For more information on docking and undocking toolbars, see CUBIT Application

Window.

Display

The Display Menu controls display options for the graphics window. These options are explained below:

View Point - Controls the camera view point. Choices are front, back, top, bottom, right, left and isometric
views.

Render Mode - Controls visibility modes, including: wireframe, true hidden, hidden line, transparent, and
shaded.

Geometry - Controls geometry visibility

Mesh - Controls mesh visibility

Graphics Composite - Controls the visiblity of composited entites in the graphics window.
Refresh - Updates the graphics display

Background - Changes the background color

Zoom In - Enlarges the model in graphics window

Zoom Out -Shrinks the model in graphics window

Zoom To Fit - Enlarges or shrinks model in the graphics window so it fills the whole screen

Toggle Perspective - When this option is selected, the entities in the graphics display window are drawn in
perspective mode.

Toggle Scale - Turns on or off a graphical scale that can be drawn in the graphics window to obtain a bearing
on model or part sizes.

Default Selection Mode - Opens a dialogue with options for entity selection.

Tools

The Tools Menu contains access to GUI-specific tools and options. These options are explained below.

Help

Journal Editor - Opens journal file editor. The Journal Editor is used to write, edit, play, and save journal files.
It can also be used to create and edit Python scripts. A built-in translator will convert between the two files
types.

Play Journal File - Plays a specified journal file. You can browse through files and folders on your computer to
select the journal file to play.

Options - Opens the Option dialog box. This dialog box controls all of the preferences for the GUI including
display colors and widths, mouse settings, journal file options, mesh and geometry defaults, and general layout
preferences. MAC users can find this menu under the Cubit tab.

Components - Opens the Components dialog box. This window is used to load and unload external and
internal components.

Tip of the Day - Open the tip of the day box.
Cubit Tutorials - Opens a menu of step-by-step tutorials for Cubit.
Cubit Manual - Menu to bring up on-line searchable documentation (this document).

About - Menu to show the current version number and trademark information. Mac users can find the version
number under the About Cubit menu in the Cubit drop-down.

59

CUBIT 11.0 User Documentation

Options Menu

To change program preferences in the Graphical User Interface select: Tools > Options . The options menu includes:

Custom Tools
Display

(] General

e Geometry Defaults

(] History and Cubit Journalling

Label Defaults
Layout

e Mesh Defaults
(] Mouse Settings

(] Post Processor

® Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools

This menu controls the creation of Custom Toolbar buttons.

Display Preferences

This menu controls entity display features for the graphics window which include the following:

Display Triad in Graphics Window
Enable Pre-Selection
Background Color
Perspective Angle
Line Width

Highlight Line Width
Text Size

Ambient Intensity
Ambient Color

Light Intensity

Light Color

General Preferences

This menu controls general program options including the following:

e Prompt for Unsaved Application Data - When this is checked and the user opens a new .cub file or exits the
application with unsaved changes, a dialog box will pop up asking if they want to save changes first. The user
can unckeck this option to prevent that dialog box from appearing. This is checked by default.

e Prompt for Unsaved Journal Data - When this button is checked and the user closes the journal file editor
with unsaved changes the program will prompt to save the changes. The user can uncheck this button to
prevent the dialog box from appearing. It is checked by default.

60

CUBIT 11.0 User Documentation

e Change to Script Directory for Playback - When this option is checked, Claro will change the working
directory to the directory the script is in when the script/journal file is run. When the script is finished, Claro will
change the directory back to the previous one. This is useful when using relative paths in a journal file. When
the option is unchecked, Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

e Prompt When Translating from Python - When checked, if the user translates a python script to a cubit
journal file, the journal editor will warn them that commands may be lost. When unchecked, the journal editor
will not issue the warning. There is a checkbox on the warning dialog that sets this option as well.

e Default Syntax - Sets the default syntax to use when creating a new journal file in the editor. The Cubit option
is only available when the cubit component is loaded.

e Show Startup Splash Screen - Option to hide the startup splash screen on opening Claro.
Geometry Defaults
This menu controls the geometry defaults.

e Vertex Size

(] Use Silhouette on Geometry
(] Silhouette pattern

The user can also change the default geometry engine to one of the following:
e ACIS
(] Facets

(] Pro Engineer/Granite

The faceting tolerance can also be controlled from this menu to change the way facets are drawn in the graphics window.

History Preferences

This menu controls the input window history and journal file options. These include:

Maximum Number of Commands - The max number of commands kept in the current command history.
Comment Line Filtering - Whether to count comments in command history.

Maximum Number of Lines - Maximum number of lines in input window.

Journal Command History - Whether to use a journal file to save command history. Default is to use a journal
file.

Journal File Directory - Where the journal file will be saved. Default is the starting directory.

Journal File Name - The name of the journal file. A name will be given by default if one is not specified. The

default name for the GUI version of cubit is historyxx.jou with xx as the highest used number between 01 and
999 incremented by 1.

Cubit History Preferences

Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By default it is checked.
Output Log - When this option is checked, you can save error log to a separate output file.

Label Defaults

This menu controls the geometry and mesh entity labels in the graphics window.

e Text Size
e | abel Geometry and Mesh Entities Toggles- Choose label visibility for each type of geometry or mesh entity

61

CUBIT 11.0 User Documentation

Layout Preferences

This menu option controls input window formatting and control panel docking options.
e Font for command line workspace
® Font size for command line workspace

® Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to show/hide each window.

Cubit Layout Settings

This menu controls the layout of Cubit specific buttons and tabs on the GUI.

® Show script tab - Shows the script tab on the command line window
e Use Labels on Buttons- Option to apply a label to each button on the control panel
e Preferred Location (currently under construction)

Mesh Defaults

(] Node Size
(] Element Shrink
. Mesh Line Color - The same as "Color Lines" command

(] Default Element Type - Tet/Tri or Hex/Quad

e Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to select different colors for
surface schemes when visualized using the meshing power tools.

Mouse Settings

This menu controls mouse button controls. Pressing the Emulate Command Line Settings button will cause all of the
settings to simulate mouse controls in the command line version of CUBIT. For a detailed description of mouse settings
see the View Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the different quality metrics see the
respective pages:

Hexahedral metrics
Quadrilateral metrics
Tetrahedral metrics

Triangular metrics

62

CUBIT 11.0 User Documentation

Creating Custom Toolbar Buttons

If you have a string of commands that you use frequently, it can be beneficial to make a custom toolbar button. To create
a custom toolbar button open the Tools->Options menu. You can create up to 10 custom buttons. See Figure 1 for an
example toolbar button.

- Custom Tools
Ry Button Two
- General
- [aeometry Defaultz v Enabled
[Histary Taool Tip |Ereate a perfarated brick and mesh
- Label Defaults
- Lawout Fizrnap d% |default image Browse ..
EESH RS Cubit Corrnards brick 10
. mﬁf cylinder radiuz 3z 12
0st Fracessar subtract wolurne 2 fram volume 1
= [Juality Defauls mesh vol 1

Save Cloze

Figure 1. Making a custom toolbar button to create and mesh a perforated brick

The button can have Python or Cubit commands. These commands will be executed in consecutive order when the button
is pushed. You must click the Enabled check box to activate your custom button.

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool tip.

The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled button.

Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo" button on the Toolbar.
Py Enable Undo Button

The Undo capability is implemented for geometry commands including webcutting, geometry creation, transformations,
and booleans.

The Undo option is also integrated with the ITEM interface to provide easy roll-back of up to two operations performed
using ITEM.

Limitations

e The undo button is not currently enabled for most meshing commands

63

CUBIT 11.0 User Documentation

Command Recording and Playback

Sequences of CUBIT commands can be recorded and used as a means to control CUBIT from ASCII text files. Command
or "journal" files can be created within CUBIT, or can be created and edited directly by the user outside CUBIT.

Journal File Creation & Playback
Controlling Playback of Journal Files
Automatic Journal File Creation
IDless Journal Files

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a text editor. CUBIT commands can
be read directly from a file at any time during CUBIT execution, or can be used to run CUBIT in batch mode. To begin and
end writing commands to a file from within CUBIT, use the command

Record '<filename>"'

Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.

Replaying a Session
To replay a journal file, issue the command
Playback '<filename>'

Journal files are most commonly created by recording commands from an interactive CUBIT session, but can also be
created using automatic journaling or even by editing an ASCII text file.

Commands being read from a file can represent either the entire set of commands for a particular session, or can
represent a subset of commands the user wishes to execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal files. Playback from a journal
file can be terminated by placing the Stop command after the last command to be executed; this causes CUBIT to stop
reading commands from the current journal file. Playback can be paused using the Pause command; the user is prompted
to hit a key, after which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the parameterization available
through the APREPRO capability in CUBIT. Journal files are also useful when a new finite element model is being built, by

saving a set of initialization commands then iteratively testing different meshing strategies after playing that initialization
file.

Controlling Playback of Journal Files

The following commands control the playback of Journal Files:
Stop
Pause
Sleep <duration_in_seconds>

Resume [<n>]

64

CUBIT 11.0 User Documentation

Where
Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal file is playing will halt
playback of the journal file. (This only works in the command line version of CUBIT. See Interrupting Running Tasks for
more information). Alternately, if the stop or pause commands are encountered in the journal file and CUBIT is reading
commands from a terminal (as opposed to a redirected file), playback of the journal file will halt after that command.

The sleep command pauses execution for the specified number of seconds. It can be used to build a delay into journal
files during presentations.

In the command line version of CUBIT you can resume playback of a journal file with the resume command. If playback
was interrupted because ctrl-c was pressed, it will resume at the next command after the one that was interrupted. If
playback stopped because of a stop or pause command in the journal file, it will resume at the next line after the stop or
pause command. If the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.

If journal files that are playing back contain playback commands themselves, there may be multiple current journal files.
The where lists all current journal files and where the journal files have paused. Each line contains the stack position (a
number), the filename and the current line in the file. Unless CUBIT is running in batch mode, the first line is always
<stdin>. This just means that CUBIT will return to the command prompt after the top-most journal file has completed.

The remaining portion of any active journal file may be skipped by specifying the stack position (first number on each line
of the output from the where command) of the file where you want to resume. Any remaining commands in active journal
files with lower stack positions will be skipped.

The next command steps through interrupted journal files line-by-line. The argument to the next command is the number
of lines to read before halting playback again. If no number is specified, the command will advance one line.

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is created in the current directory,
and its name begins with the word "cubit " or "history", depending on the version of CUBIT, followed by a number starting
with cubitO1.jou and continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To that end, when the
journal name increments to more than cubit99.jou, a warning will be given on startup telling the user that there are at least
99 journal files, and to please clean out unused files. If the user has up through cubit999.jou, then the user is warned that
there are too many journal files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.

When starting cubit, the choice of journal file name to be used depends on whether it is creating a historyXX.jou file, or a
cubitXX.jou file. For historyXX.jou files, it will look for the highest used number in the current directory and increment it by
one. For example, if there are already journal files with names history01.jou, history02.jou, and history04.jou, Cubit will
use history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting with the lowest number. For
example, if there are already journal files with names cubit01.jou, cubit02, jou, and cubit04.jou, then Cubit will use
cubit03.jou as the current journal file.

Journal file names end with a ".jou" extension, though this is not strictly required for user-generated journal files. If no
journaling is desired, the user may start CUBIT with the -nojournal command line option or use the command :

[set] Journal {Off | On}
Turning journaling back on resumes writing commands to the same journal file.

Most CUBIT commands entered during a session are journaled; the exceptions are commands that require interactive
input (such as Zoom Cursor), some graphics related commands, and the Playback command.

Recording Graphics Commands
All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}

65

CUBIT 11.0 User Documentation

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled using the entity name, or by
using the corresponding entity type and id. The method used to journal commands using names is determined with the
command:

Journal Names {On | Off}
The default is Journal Names On .

If an entity is referred to using its entity type and id, the command will be journaled with the entity type and id, even if the
entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command
Set aprepro [ON|off]

See APREPRO Journaling for more information.

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute successfully. To turn this mode off and
echo all commands to the journal file, regardless of the success status, use the following command:

Journal Errors {on|OFF}

If a command did not execute successfully and the journal errors status is ON, then the unsuccessful command will be
written as a comment to the file. For example an unsuccessful command might look like the following in the journal file

create brick x 10 x 10z 10

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is issued, but will still write the
command to the journal file as a comment, prefixing the command with "##".

This option may be useful when tracking or documenting program errors.

Idless Journal Files

Journal files can also be created without reference to entity IDs. The purpose of this command is to enable journal files
created in earlier versions of CUBIT to be played back in newer versions of CUBIT. Using the "IDless" method,
commands entered with an entity ID will be journaled with an alternative way of referring to the entity. Changes in CUBIT
or ACIS often lead to changes in entity IDs. For example, a webcut may result in volume 3 on the left and volume 4 on the
right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on the right). Playing an IDless
journal file makes the actual ID of an entity irrelevant.The syntax for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity IDs. For example, "mesh
volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".

Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as they are entered).

The reverse option allows you to convert idless journal files back into an ID-based journal file where the new journal file
will reflect current numbering standards for IDs.

If you issue the command Journal IDless without any additional options, then the current status of ID journaling is
printed. At startup, this should be "off".

The most likely scenario for converting older journal is to use the record command during playback. The following is an
example.

66

CUBIT 11.0 User Documentation

journal idless on

record "my_idless.jou"

pl ayback "ny_journal.jou"
record stop

journal idless off

To record an idless journal file back into an id-based journal file you might use the following sequence.

journal idless reverse
record "new_ i d based. | ou"
pl ayback "ny_idl ess.jou"
record stop

journal idless off

Note: Aprepro expressions are not modified when converting a journal file to or from its IDless form. Any aprepro
expression containing an entity ID, such as {Vx(10)}, will still refer to the same ID regardless of any IDless conversions.
When moving a journal file from one version of CUBIT to another, it may be necessary to manually update 1Ds in aprepro
expressions.

Graphics Window Control

The graphics display windows present a graphical representation of the geometry and/or the mesh. The quality and speed
of rendering the graphics, the visibility, location and orientation of objects in the window, and the labeling of entities,
among other things, can all be controlled by the user.

Unless the -nographics option was entered on the command line, a graphics window with a black background and an
axis triad will appear when CUBIT is first launched. The geometry and mesh will appear in this window, and can be
viewed from various camera positions and drawn in various modes (wire frame, hidden line, smooth shade, etc.). This
section will discuss methods for manipulating the graphics with the mouse and for controlling the appearance of entities
drawn in the graphics window.

Graphics in CUBIT operates on the principle of a "display list", which keeps track of various entities known to the graphics.
All geometry and mesh objects created in CUBIT are put into the display list automatically. The visibility and various other
attributes of entities in the display list can be controlled individually. In addition, CUBIT can also optionally display entities
in a temporary mode, independent of their visibility in the display list. Drawing of items in temporary mode can be
combined with the display list to customize the appearance. The overall display is controlled by various attributes like
graphics mode, camera position, and lighting, to further enhance the graphics functionality.

The following items discuss the various graphics capabilities available in CUBIT:

Command Line View Navigation: Rotate Zoom and Pan
Mouse Based View Navigation: Rotate Zoom and Pan
Updating the Display

Graphics Modes

Drawing and Highlighting Entities

Mesh Visualization

Entity Labels

Colors

Geometry and Mesh Entity Visibility

Graphics Camera

Graphics Lighting Model

Graphics Window Size and Position

Saving Graphics Views

Hardcopy Output
Miscellaneous Graphics Options

Updating the Display

Among the most common graphics-related commands is:

67

CUBIT 11.0 User Documentation

Display

This command clears all highlighting and temporary drawing, and then redraws the model according to the current
graphics settings. Two related commands are:

Graphics Flush

Graphics Clear
Graphics Flush redraws the graphics without clearing highlighting or temporary drawing. Graphics Flush is useful when
a previously executed command modified the graphics and didn't update the screen and the user wishes to update the
display. The Graphics Clear command clears the graphics window without redrawing the scene, leaving the window
blank.
NOTE: Although most changes to the model are immediately reflected in the graphics display, some are not (for graphics

efficiency). Typing Display will update the display after such commands. Ctrl-R will also update the display as long as the
mouse is in the graphics window.

Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an action has been performed. To
prevent the graphics from automatically updating, use the following command:

Graphics Pause
This command prevents the graphics window from being updated until the next time the Display command is issued.

NOTE: The Plot command is synonymous to the Display command, and either can be used with identical results.

Command Line View Navigation: Zoom, Pan and
Rotate

Commands used to affect camera position or other functions are listed below. All rotation, panning, and zooming
operations can include the Animation Steps qualifier, makes the image pass smoothly through the total transformation.
Animation also allows the user to see how a transformation command arrives at its destination by showing the
intermediate positions.

Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation Steps
<number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2> [Animation Steps
<number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the camera's "At" point, or
about the camera itself. Additionally rotations can be specified about any general axis by specifying start and end points to
define the general vector. The right hand rule is used in all rotations.

Plain degree rotations are in the Screen coordinate system by default, which is centered on the camera's At point. The
Camera keyword causes the camera to rotate about itself (the camera's From point). The World keyword causes the

rotation to occur about the model's coordinate system. Rotations can also be performed about the line joining the two end
vertices of a curve in the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factorl>] [{Up|Down} <factor2>] [Screen | World] [Animation Steps
<number_steps>]

68

CUBIT 11.0 User Documentation

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the From point and At
point are translated equal distances and directions, while the perspective angle and up vector remain unchanged. The
scene can also be panned by a factor of the graphics window size.

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the default), <factor> is in

screen coordinates, in which the width of the screen is one unit. If World is indicated, <factor> is expressed in the model
units.

Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]
Zoom <x_min><y_min> <x_max> <y_max> [Animation Steps <number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face | Tri | Edge | Node}
<id_range> [Animation Steps <number_steps>] [Direction {options}]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that objects on the focal plane
will appear <factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in screen coordinates; for
example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type and ID after entering Zoom. The
image will be adjusted to fit bounding box of the specified entity into the graphics window, and the specified entity will be
highlighted. You can specify a final direction to look at when zooming by using the direction option.

To center the view on all visible entities, use the Zoom Reset command.

Mouse Based View Navigation: Zoom, Pan and
Rotate

The mouse can be used to navigate through the scene using various view transformations. These transformations are
accomplished by clicking a mouse button in the graphics window and dragging, sometimes while holding a modifier key
such as Shift or Control. When run with graphics on, CUBIT is always in mouse mode; that is, mouse-based
transformations are always available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics window and then either
holding down a mouse button and dragging, or by clicking on a location in the graphics window. Some functions also

require one or more modifier keys to be held down; the modifier keys used in CUBIT are Shift and Control

. Each of the available view transformations has a default binding to a mouse button-modifier key combination. This
binding can be changed by the user if desired. Transformations and button mappings are summarized in the following
table.

Note: These settings are applicable only to the UNIX command line version of CUBIT. For a description of the Graphical
User Interface Mouse Operations see GUI View Navigation.

The bindings are based on the following mouse button definitions:

B2 B3

B1

Figure 1. Default Mouse Function Mappings for the Command Line

69

CUBIT 11.0 User Documentation

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate

Function Description Binding

Rotates the scene about the camera axis. Dragging the mouse near

the center of the graphics window will rotate the camera's X- or Y-

axis; dragging near the edge of the window will rotate about the Z- B1
axis (i.e. about the camera's line of sight). Type a u in the graphics

window to see the dividing line between the two types of rotation.

Rotate

Zooms the scene in or out by clicking the mouse in the graphics

Zoom window and dragging up or down. If the mouse has a wheel, the B2

wheel will also zoom.
Pan "Drags" the scene around with the mouse B3
Navigational |Zooms the scene by moving both the camera and its focal point
Zoon% forward. BZ
Telephoto Zooms the scene by decreasing the field of view. aft | Ctrl
Zoom y 9 s haft B2

Pan Cursor |Click on new center of view B3

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse Function Mappings table above,
can be modified. There are two ways to assign a function to a button/modifier combination.

First, you can use the command
Mouse Function <function_id> Button <1|2|3> [Shift][Control].
Type Help Mouse Function to see a list of function IDs that may be used in this command.

Second, you can assign functions interactively. To do so, first put the pointer into a graphics window and then hit the F
key. On-screen instructions will lead you through the rest of the process.

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view is restored by setting the
graphics camera attributes to a given set of values. The following keys, pressed while the pointer is in the graphics
window, provide this capability:

V - Restores the view as it was the last time Display was entered.
F1 to F12 - These function keys represent 12 saved views. To save a view, hold down the Control

key while pressing the function key. To restore that view later, press the same function key without
the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate form of dynamic viewing,
therefore the ability to save views is not currently supported in the GUI.

You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

70

CUBIT 11.0 User Documentation

The current view parameters will be stored in the specified position. If no position is specified, the view can be restored by
pressing V in the graphics window. If a position is specified, the view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1 refer to a front view of
the model, the following commands could be entered into a .cubit file:

FromO01
At 0
Up010
Graphics Autocenter On
View Save Position 1
The first three commands set the orientation of the camera. The fourth command ensures that the model will be centered
each time the view is restored. The final command saves the view parameters in position 1. The view can be restored by
pressing F1 while the cursor is in a graphics window.
Additionally, you can change the 'gain' on the mouse movements by changing the mouse gain setting, via the command:
Mouse Gain <value>
where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be half as sensitive.

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be ‘flipped’, by toggling the
reversezoom setting.

Graphics Modes

By default, the scene is viewed as a wireframe model. That is, only curves and edges are drawn, and surfaces are
transparent. Surfaces can be drawn differently by changing the graphics mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent | Truehiddenline }
[geometry | mesh]

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This mode can also be
accessed by typing 'wireframe' at the command prompt.)

71

CUBIT 11.0 User Documentation

HiddenLine - Surfaces are not drawn, but they obscure what is
behind them, giving a more realistic representation of the view. (This
mode can also be accessed by typing ‘hiddenline' at the command
prompt.)

SmoothShade - Surfaces are filled and shaded. Shaded colors are
interpolated across the entire surface using the graphics lighting
model. This produces the most realistic results. (This mode can also
be accessed by typing 'shaded' at the command prompt.)

Transparent - Renders surfaces as semi-transparent shaded
images, allowing objects to shine-through from behind. Is not
supported on all platforms, and generally requires advanced
graphics hardware. (This mode can also be accessed by typing
'transparent' at the command prompt.)

Truehiddenline - Similar to Hiddenline mode, but partly shows
obscured lines. TrueHiddenLine mode also gives you additional
options described below.

Truehiddenline Options

Graphics TrueHiddenLine Pattern <pattern>

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click here for a list of valid
line patterns).

Displaying Using the Element Facets

There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

72

CUBIT 11.0 User Documentation

This command determines how shaded and filled surfaces are drawn when they are meshed. If Graphics Use Facets is
on, the mesh facets (element faces) are used to render the model. This is particularly helpful for curved surfaces which
may cut through some of the mesh faces. A comparison of graphics facets on and off is shown below.

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right); note how
geometry facets on the curved surface obscure mesh edges when facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry. By default, the underlying
surfaces are marked with dashed lines. To toggle this setting so that underlying surfaces are not shown, use the following

command:

Graphics Composite {on|off}

(a) {b)
Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not displayed

Drawing and Highlighting Entities

In order to effectively visualize the model, it is often necessary to draw an entity by itself, or several entities as a group.
This is easily done with the command

Draw {Entity specification}[Add]

73

CUBIT 11.0 User Documentation

where Entity specification is an entity list as described in Command Line Entity Specification. This command clears the
display before drawing the specified entity or entities. If the Add option is specified, the display is not cleared, and the
given entity is added to what is already drawn on the screen. The entities specified in this command are drawn regardless
of their visibility setting (see Geometry and Mesh Entity Visibility for more details about visibility).

Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the mouse is in the graphics
window. This will clear the screen and then draw only those entities that are currently selected.

Entities can be highlighted using the command
Highlight {Entity specification}

This command highlights the specified entities in the current display with the current highlight color. Highlighting can be
removed using the command

Graphics Clear Highlight
To return to the normal display of the entire model, type Display.
The Locate command will label and point to the specified entity in the graphics window. The command syntax is:
Locate <entity_list>
Additionally, the visibility of individual entities, or sets of entities, can be controlled with the following visibility commands.
{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh] Visibility {on|off}
Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be drawn with variations of the Draw
command. As with the other Draw commands, typing Display after drawing these objects will restore the scene to its
normal display.

Displaying Entity Orientation
The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the command
Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face | Tri]

If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or tris that belong to the
specified surface are drawn.

The forward, or tangent, direction of a curve can be drawn with the command:
Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]

If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with the sweep algorithm, the source
and target may be visually identified with the command

Draw Volume <volume_id_range> [Source][Target] [Length <size>]
If the Source keyword is included, the normal of the source surface or surfaces will be drawn in green into the specified

volume. If the Target keyword is included, the normal of the target surface or surfaces will be drawn in red into the
specified volume.

74

CUBIT 11.0 User Documentation

Model Axis

The model axis may be drawn with the command
Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three coordinate directions. The
length of those lines is determined by the length parameter, which defaults to 1.

Surface Isoparameter Lines

Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u <number>] [v
<number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal. You may specify instead a

number of lines for each of the u and v parameters. The u-parameter lines will be drawn in red and the v-parameter lines
will be drawn in blue.

Surface Overlap
The overlapping regions between two surfaces may be drawn with the command
Draw Surface <id> <id>Overlap [Add]
This command will draw the curves of each of the surfaces in green, and the portion of the surfaces that overlap in red.

The Add keyword will draw the overlapping surfaces on top of the current graphics display. Without the Add keyword, the
display will only show the specifed surfaces and their overlapping regions.

Geometry Preview

Several options are available for previewing geometry without actually generating it. This is typically used in conjunction
with webcutting and surface creation. The following Draw commands can be used for previewing geometry:

Draw Location On Curve

Draw Location
Draw Direction
Draw Axis

Draw Plane

Draw Cylinder

Mesh Visualization

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh slicing. This tool divides the
elements of one or more volumes into axis-aligned layers, and then allows the mesh to be displayed one layer at a time.
Mesh slicing is especially useful to view the quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge length is used to
determine the thickness of each layer, a layer may be more than one element deep. Unstructured meshes, meshes with
large variations in edge length, and non-axis-aligned meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which slices the mesh of the entire
model, or by entering the command

75

CUBIT 11.0 User Documentation

Graphics Slice {Body | Volume} <id_range> Axis {X| Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.

Key presses in the graphics window which control mesh slicing are summarized in the following table.

Key Action
X,Yorz Initiate mesh slicing using the X, Y or Z plane
K Move the slicing plane in the positive coordinate direction
J Move the slicing plane in the negative coordinate direction
s Toggles drawing single or multiple slice layers in the view
Q Exit from mesh slicing mode

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Genesis ID. Genesis ID labels are only valid after exporting a

mesh.

Geometric entities can be labeled with their ID number or with other information.

Labels for groups of entity types can be turned on or off.

The following commands will accomplish this.

Label [on|offlname [only|id]|id|interval|size|merge|firmness]

Label All [on|offiname [only|id]|id|interval|size|merge|firmness]

Label Body [on]|off| name [only]id] |id|interval|size| merge |firmness]

Label Curve [on|offlname [only|id] |id| interval| size| merge| firmness]

Label {Hex|Tet|Face|Tri|Edge} [on|off]

Label Geometry [on|offiname [only|id] |id| interval| size| merge| firmness]

Label Mesh [on|off]

Label Node [on]|off|genesis]

Label Surface [on|offlname [only|id] |id| interval| scheme| size| merge| firmness]
Label Vertex [on|offlname [only|id] |id|interval| size| merge| firmness]

Label Volume [on|offilname [only]id] |id |interval| size |[scheme |merge |firmness]

The meaning of each of each label type is listed below. Note that some label types don't make sense for every entity type.

76

On - The same as IDs.

CUBIT 11.0 User Documentation

Name - Name of the entity, if the entity has been named. Default name otherwise.
Name Only - If the entity has been named, use the name as the label. Otherwise, don't use a label.

Name IDs - If the entity has been named, use the name as the label. Otherwise, use the ID as the
label.

Interval - The number of intervals set on the entity.

Firmness - Same as interval, but followed by a letter indicating the firmness of the interval setting
(see the Mesh Generation chapter for description of firmness settings.)

Merge - Whether or not the entity is mergeable. Note that this is sometimes not clear, because, for
example, a curve may show that it isn't mergeable because one of its owning surfaces may be
unmergeable, while another owning surface may be mergeable.

Size - The mesh size set on this entity.

Note: Three dimensional entity types such as body will have their labels displayed in the center of the entity. Thus, in the
smooth shade and hidden line graphics modes the labels will be hidden

Colors

Specifying Colors in Commands

There are five ways to refer to a color in a command. They are
<color_name>
User "name"
ID <id>
default
highlight

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix. This option may not be
used for user-defined colors. An example of a pre-defined color assignment is given below:

Color Volume 1 Lightblue

The second option is used with user-defined colors only. Include the name of the user-defined color in quotes. Pre-defined
colors will not work with this command.

Color Volume 1 User "mycolor"

The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed in the Available Colors
appendix. This option is rarely used.

Color Volume 11D 5

The default option is used to set an entity's color to its default value. The default color may also be specified in drawing
commands, but the command's behavior will be the same as if the color option had not been included at all.

Color Volume 1 Default
The fifth option refers to the current highlight color.

Draw Curve 1 Tangent Color Highlight

77

CUBIT 11.0 User Documentation

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors. Users may also define their
own colors in addition to those defined by CUBIT. Each color is defined by a name and by its RGB components, which
range from O to 1.
To define an additional color, use either of the commands

Color Define "<name>" RGB <r g b>

Color Define "<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear a color definition. This is
done with the command

Color Release "<color_name>"
Color names can be listed with the command
Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To view a chart of color names and
IDs, including those for user-defined colors, use the command

Draw Colortable

Assigning Colors

Colors can be assigned to all geometric entities, and to some other objects as well. To assign a color to an entity or other
object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}
Color Background {<color_name>| id <color_id>} [<color_name2>|id <color_id2>]
Color Block <block_id_range>{<color_name> | id <color_id>}
Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}
Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}
Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}
Color Highlight {<color_name>| id <color_id>}
Color Lines <color_name>
Color NodeSet <id_range> { <color_name> | id <color_id> | Default }
Color SideSet <id_range>{ <color_name> | id <color_id> | Default }
Color Surface <surface_id_range> [Geometry|Mesh] {<color_name>|Default}
Color Title {<color_name>|id <color_id>}
Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}
Color Whiskersheet <sideset_id_range> {<color_name> | id <color_id> | Default}
Including the Mesh keyword will change the color of the mesh belonging to the specified entity, without changing the color

of the entity geometry itself. Conversely, including the Geometry keyword will change the geometry color without changing
the mesh color. Including both keywords is identical to including neither keyword.

78

CUBIT 11.0 User Documentation

Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all of its surfaces will also be
drawn in that color. Once you assign a color to an entity, however, it will remain that color and will no longer follow color
changes to parent entities. To make an entity follow the color of its parent after having explicitly set another color, use
Default as the color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take effect, however, unless
the nodeset, sideset, or element block is drawn with a Draw command.

The background color and the color used to draw highlighted entities can be changed to any color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate directions. If the
background is changed to white, these labels are impossible to read; the color used to draw axis labels can be changed to
any color. Changing the axis label color will change the text color for both the model axis and the triad (corner axis).
When several entity types are labeled, it can become difficult to determine which labels apply to which entities. To help

distinguish which entities are being referred to by the labels, you may want to change the color of labels for specific entity
types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the same color as the
surface. This is to prevent confusion between mesh edges and geometric curves, and to make the mesh edges more
visible. The color used to draw mesh edges in this situation is known as the line color, and is gray by default; this color
can be changed to any color.

Geometry and Mesh Entity Visibility

The visibility of geometric and mesh entities can be turned on or off, either individually, by entity type, by general entity
class (mesh, geometry, etc.), or globally. Note that these commands do not refresh automatically. To refresh type display
or graphics flush or click in the display window.
The commands to set the visibility are:

{ {Body|Curve|Surface|Volume} <range>} [Mesh][Geometry] Visibility [On|Off]

Edge Visibility [On | Off]

Vertex [Visibility] [on|off]

{Mesh|Geometry} { [Visibility] [on|off] }
If the Mesh keyword is included, only the visibility of the mesh belonging to the specified entity is affected. Similarly, if the
Geometry keyword is included, only the visibility of the geometry is affected. Including neither keyword is identical to
using both keywords.
Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its surfaces are also invisible
unless they also belong to some other visible volume. As another case, if the volume is visible, but a surface is set to
invisible, the surface will not follow its parent's visibility setting, but will remain invisible.
If edge visibility is off, mesh edges will not be drawn when mesh faces are drawn.

If vertex visibility is turned on, the vertices of the geometry become visible. The default for vertex visibility is off.

After turning mesh visibility off, all mesh will remain invisible until mesh visibility is turned on again. This is true no matter
what other visibility commands are entered.

Similarly, after turning geometry visibility off, all geometry will remain invisible until geometry visibility is turned on again.
This is true no matter what other visibility commands are entered.

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to generate the scene. A
scene camera has attributes described below, and depicted graphically in Figure 1. The values of these camera attributes
determine how the scene appears in the graphics window.

Position (From) - The location of the camera in model coordinates.

79

CUBIT 11.0 User Documentation

View Direction (At) - The focal point of the camera in model coordinates.

Up Direction (Up) - The point indicating the direction to which the top of the camera is pointing. The Up point determines
how the camera is rotated about its line of sight.

Projection - Determines how the three-dimensional model is mapped to the two-dimensional graphics window.

Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion of the scene.

Perspective Angle

Wiew From Wiew AL

Figure 1: Schematic of From, At, Up, and Perspective Angle
At any time, the camera can be moved back to its original position and view using the command
View Reset
To see the current settings of these attributes, use the command
List View

The current value of the view attributes will be printed to the terminal window, along with other useful view information
such as the current graphics mode and the width of the current scene in model coordinates.

Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as follows.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-Based View Navigation) or
using the rotate, pan and zoom commands. However, the camera attributes can also be modified directly with the
following commands:

From <x y z>

At <xy z>

Up <x y z>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>
If graphics perspective is on, a perspective projection is used,; if graphics perspective is off, an orthographic projection is
used. With a perspective projection, the scene is drawn as it would look to a real camera. This gives a three-dimensional
sense of depth, but causes most parallel lines to be drawn non-parallel to each other. If an orthographic projection is
used, no sense of depth is given, but parallel lines are always drawn parallel to each other.
In a perspective view, changing the perspective angle changes the field of view by changing the angle from the line of

sight to the edge of the visible scene. The effect is similar to a telephoto zoom with a camera. A smaller perspective angle
results in a larger zoom. This command has no effect when graphics perspective is off.

80

CUBIT 11.0 User Documentation

Graphics Lighting Model

For shaded graphics display modes, the lighting model controls the intensity of the highlights and shadows for objects
displayed in the graphics window. CUBIT offers two commands for controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}

Graphics Light Intensity {<intensity> | <r g b>}
The ambient intensity is the light available in the environment. There is no particular direction to the light source. In
contrast, the light intensity is the effect of a simulated light source placed at the viewer's line of sight. The light intensity
affects the intensity of the highlights and shadows, while the ambient intensity affects the brightness of the objects in the
overall scene.
An intensity value from 0 to 1 can be used, where O represents no light and 1 represents maximum. Alternatively r g b

color components can be used. This changes the color of the directional or ambient light source, affecting the resulting
color of the objects in the model.

Graphics Window Size and Position

By default, CUBIT will create a single graphics window when it starts up (to run CUBIT without a graphics window, include
-nographics on the command line when launching CUBIT.) The graphics window position and size is most easily adjusted
using the mouse, like any other window on an X-windows screen. However, the size of the graphics window can also be
controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>

Graphics WindowSize Maximum

Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum commands, the previous
window size can be restored by using the command

Graphics WindowSize Restore

In addition, on Unix workstations, the graphics window size and position can be controlled by placing the following line in
the user's .Xdefaults file:

cubit.graphics.geometry XxY xpos ypos

where the X and Y are window width and height in pixels, respectively, and xpos and ypos are the offsets from the lower
left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view. Each window has an ID,
from 1 to 10, shown in the title bar of the window. Commands that control camera attributes apply to only one window at a
time, the active window. Currently, the display lists of all windows are identical.
The following commands are used to create, delete, and make active additional graphics windows.

Graphics Window Create [ID]

Graphics Window Delete <ID>

Graphics Window Active <ID>

Saving Graphics Views

The current graphics view can be saved using the following command:

view save position <n>

81

CUBIT 11.0 User Documentation

When you save a view, you save the camera settings in effect at the time the command is issued. When you restore the
view, the camera is returned to the saved position, orientation, and field of view.

If autocenter is on at the time you save the view, then restoring the view will automatically adjust the camera settings to
center on the entire model and fit the entire model on the screen, a lot like "zoom reset." You turn autocenter on by typing
"graphics autocenter on."
Example of how to save a top view:

at0

from010

up 10

graphics autocenter on

view save position 3
Use this command to restore that view:

view restore position 3
The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the right. The model will be
centered in the view and zoomed so that everything just fits into the graphics window. This is true even if the model is not

centered on the origin.

If autocenter is off when the "view save" command is issued, the camera is not adjusted to fit the scene into the graphics
window. Instead, it is placed exactly where it was at the time the "save" command was issued.

Note that many graphics commands, such as "at", "from", and "up", do not change what appears in the graphics window
until a "display" command is issued. They do, however, take immediate effect internally, and they do affect what is saved
by the "view save" command.

In the command line version of CUBIT, you can save a view by holding down the control key and pressing one of the
function keys (F1-F12). Each function key corresponds to a different saved view. A total of 12 views can be saved.. A view
can be restored at a later time by pressing the appropriate function key WITHOUT holding down the control key.

It may be useful to save views in your cubit file so that they are available every time you run CUBIT. Use CUBIT to save
front, top, and side views in positions 1, 2, and 3. If views are saved in your cubit file, it is convenient to add a "view reset"

command after the views have been saved. Then the graphics will initially appear as they would if the view commands
had not been included in your cubit file.

Hardcopy Output

CUBIT's Graphical User Interface provides the capability to print the contents of the graphics window directly to a printer.

In addition, a command line option is provided for dumping the contents of the graphics window to postscript or image
files.

The command for generating hardcopy output files is:
Hardcopy '<filename>' {jpg | gif | bmp | pnm | tiff | eps} [window <window_id>]

Each of these options saves the view in the specified window (or the current window), to the specified file, in the format
indicated. The file can then be sent to a printer or inserted into another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing screen images. In many cases,
these applications may be more convenient for interactively capturing and saving a portion of the screen than the
Hardcopy command discussed above. On UNIX platforms, the XV utility written by John Bradley is a good choice. In
some cases this utility or its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint program.

82

CUBIT 11.0 User Documentation

Miscellaneous Graphics Options

In addition to the commands discussed above, there are several other graphics system options in CUBIT that can be
controlled by the user.

They include:

Silhouette Lines
Line Width

Highlight Line Width
Text Size

Point Size

Graphics Status

Graphics Scale
Model Axis

Corner Axis

Resetting the Graphics
Shrink

Facet Tolerance

Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true geometric curves, but
help visualize the shape of a surface. Silhouette lines can be turned on or off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [solid | dashdot | dashed | dotted | dash_2dot | dash_3dot |
long_dash | phantom]

Line Width

This option controls the width of the lines used in the wireframe, shaded, transparent, hiddenline and truehiddenline
displays. The default is 1 pixel wide. After using this command, it is necessary to refresh the graphics by either typing
"display" or clicking the Refresh Graphics button. The command to set the line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to a width greater than the global
line width often makes it easier to locate highlighted entities. If this setting has not been changed, the line width set in the
command above is used. After using this command, it is necessary to refresh the graphics by either typing "display” or
clicking the Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this command is the desired size
relative to the default size. After using this command, it is necessary to refresh the graphics by either typing "display” or
clicking the Refresh Graphics button. The command to set the text size is

Graphics Text Size <size>

83

CUBIT 11.0 User Documentation

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads of vectors; alternatively,
the size of points representing nodes or vertices can be set independently of the global point size. The commands to set
the point sizes are

Graphics Point Size <size>

Graphics [Node | Vertex] Point Size <size>

Graphics Status
All graphics commands can be disabled or re-enabled with the command
Graphics {On | Off}

While graphics are off, changes in the model will not appear in the graphics window, and all graphics commands will be
ignored. When graphics are again turned on, the scene will be updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain a bearing on model or part sizes.
The command to turn the graphical scale on and off is:

Graphics Scale [On | Off]

Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled with the command
Graphics Axis [Type <AXIS | Origin>] [on | off]
The command is used to specify whether the model axis is visible, and to determine how the axis is drawn. If you include

Type Axis , the axis will be drawn as three orthogonal lines; if you include Type Origin, the axis will be drawn as a circle at
the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called the triad, can be disabled or
re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics

Many of the graphic options can be reset back to default values with the command:
Graphics Reset

The graphic options set to defaults are:

ambient and spot light intensity
background color

text size

graphics mode

silhouetting

point size

view type (Perspective)

In addition, this command also:

84

CUBIT 11.0 User Documentation

centers the view on all visible entities (Zoom Reset)

turns all labeling off

turns vertex visibility off

turns mesh and geometry visibility on

moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their centroid. This is useful for viewing 3D
meshes, permitting viewing of interior elements. It may also be useful for visually inspecting the mesh for missing
elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>

draw tet <range>

etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero (0) will not shrink the
elements. The following figures illustrate the effect of element shrink on a hex mesh.

85

CUBIT 11.0 User Documentation

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance

The graphics tolerance commands change the way that facets are drawn in the graphics window. It does not affect the
underlying geometry, just the graphics display. It can be useful to change the facet tolerance on large models if the
refresh speed is slow.

Graphics Tolerance [[ANGLE|distance] <val>|Default]
Specifying an angle will change the maximum allowable angle between neighboring facets. The distance option will set a

maximum distance between adjacent facets. Increasing either of these numbers will result in coarser facets. The default
option will return values to their default settings.

Entity Selection

e Command Line Entity Specification
. Extended Command Line Entity Specification
e Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be selected from the
command line using entity specification parameters, or directly in the graphics window using the mouse. This chapter
describes these methods of entity selection.

Command Line Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and sometimes names. IDs and names
are used in most commands to specify which objects on which the command is to operate.

These objects can be specified in CUBIT commands in a variety of ways, which are best introduced with the following
examples (the portion of each command which specifies a list of entities is shown in blue):

General ranges: Surface 1 2 4to 6 by 2 34 5 Scheme Pave

Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6

86

CUBIT 11.0 User Documentation

Geometric topology traversal: Vertex in Volume 2 Size 0.3

Mesh topology traversal: Draw Edge in Hex 32

All keyword: List Block all

Expand keyword: my_curve_group expand Scheme Bias Factor 1.5

Except keyword: List Curve 1 to 50 except 2 4 6

In addition to the examples above, there is an extended parsing capability that allows entities to be specified by a general
set of criteria. This extended parsing capability is disabled by default in order to maintain journal file compatibility with
earlier versions of CUBIT. In future versions of CUBIT (7.1 and above), extended parsing will be enabled by default. See

Extended Entity Specification (data filters) for details. The following is a simple example of an extended entity
specification:

By Criteria: Draw Curve With Length > 3

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing
Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges (volume 3 to 7),
and in stepped ranges (volume 3 to 7 step 2). The word all may also be used to specify all entities of

a given type.

An ID range has the form <start_id> to <end_id>. It represents each ID between start_id and
end_id, inclusive.

A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It represents the set of
IDs between start_id and end_id, inclusive, which can be obtained by adding some integer multiple
of step to start_id. For example, 3 to 8 step 2 is equivalentto 35 7.

The various methods of specifying IDs can be used together. For example:

Draw Surface 1 2 4 to 6 Vertex All

2. Topological traversal

Topological traversal is indicated using the "in" identifier, can span multiple levels in a hierarchy, and
can go either up or down the topology tree. For example, the following entity lists are all valid:

Vertex in Volume 3

Volumein Vertex 24 6

Curve 1to 3in Body 4to 8 by 2

If ranges of entities are given on both sides of the "“in" identifier, the intersection of the two sets
results. For example, in the last command above, the curves that have ids of 1, 2 or 3 and are also in

bodies 4, 6 and 8 are used in the command.

Topology traversal is also valid between entity types. Therefore, the following commands would also
be valid:

Draw Node in Surface 3

Draw Surface in Edge 362

Draw Hex in Face in Surface 2

Draw Node in Hex in Face in Surface 2

Draw Edge in Node in Surface 2

87

CUBIT 11.0 User Documentation

3. Exclusion

Entity lists can be entered then filtered using the "except" identifier. This identifier and the ids
following it apply only to the immediately preceding entity list, and are taken to be the same entity
type. For example, the following entity lists are valid:

Curve all except 246
Curve125to 50 except 234
Curve all except 234 in surface 2 to 10
Curve in surface 3 except 2 (produces empty entity list!)

4. Group expansion
Groups in CUBIT can consist of any number of geometry entities, and the entities can be of different
type (vertex, curve, etc.). Operations on groups can be classified as operations on the group itself or
operations on all entities in the group. If a group identifier in a command is followed immediately by
the “expand' qualifier, the contents of the group(s) are substituted in place of the group identifier(s);
otherwise the command is interpreted as an operation on the group as a whole. If a group preceding
the “expand' qualifier includes other groups, all groups are expanded in a recursive fashion.
For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1 and 2 are

bounded by curves 2, 3, 4 and 5. The commands in Table 1, illustrate the behavior of the “expand'
qualifier.

Extended Command Line Entity Specification

In addition to basic entity specification, entities may be specified using an extended expression. An extended expression
identifies one or more entities using a set of entity criteria. These criteria describe properties of the entities one wishes to
operate upon.

Extended Parsing Syntax

All expressions that are valid when extended parsing is disabled are also valid when extended parsing is enabled. In other
words, you may still specify a list of entities by ID range, topological relationship, etc. The most common type of extended
expression is in this format:

{Entity_Type} With {Criteria}
Entity_Type is the name of any type of entity that can be used in a command, such as Curve, Hex, or SideSet. Criteria is
a combination of entity properties (such as Length), operators (such as >=), keywords (such as Not), and values (such as
5.3) that can be evaluated to true or false for a given entity. Here are some examples:

Curve With Length <1 Surface With Is_Meshed = FalseNode With X_Coord > 10 And Y_Coord >
0

Keywords

These are the keyword defined by extended parsing All, To, Step, By, Except, In, Expand

These keywords are used the same way as in basic entity specification. For example:

Draw Surface All
Draw Surface 1 To 5 Step 2 Curve 1to 3in Body 4to 8 by 2
Draw Hex in Face in Surface 2
Draw Node in Hex in Face in Surface 2 Curve 1 2 5to 50 except 23 4
Not - Not flips the logical sense of an expression - it changes true to false and false to true. For example:

Draw Surface With Not Is_Meshed

88

CUBIT 11.0 User Documentation

Of - The of operator is used to get an attribute value for a single entity, such as "length of curve 5". Only attributes that
return a single numeric value may be used in an "of" expression. There must be only one entity specified after the "of"
operator, but it can be identified using any valid entity expression. An example of a complete command which includes
the "of" operator is:

List Curve With Length < Length Of Curve 5ids

Operators <, >, <=, >=, =, <> - These relational operators compare two expressions. You may use = or == for "equals".
<> means "not equal". For example:

Draw Surface With X_Max <=3

Draw Volume With Z_Max <>12.3

Arithmetic Operators +, -, *, / These arithmetic operators work in the traditional manner.
Draw Surface With Length *3+1.2> 10

And, Or - These logic operators determine how multiple criteria are combined.
Draw Surface With Length > 3 Or With Is_Meshed = False

() - Parentheses are used to group expressions and to override precedence. When in doubt about precedence, use
parentheses.

Draw Surface With Length > 3 And (With Is_Meshed = False Or X_Min >1)

Functions

The following functions are defined. Not all functions apply to all entities. If a function does not apply to a given entity, the
function returns 0O or false.

ID - The ID of an entity.

Length - The length of a curve or edge.

Exterior_Angle - Works for curves with an exterior angle greater than (>), less_than (<), or equal to (=) a given angle in
degrees. This is used if you want to do some operation, such as refinement, on all the reentrant curves or curves with
surfaces that form a certain angle.

Is_Meshed - Whether a geometric entity has been meshed or not.

Is_Spline - Whether a geometric entity is defined using a NURBS representation. Otherwise the entity has an analytic
representation.

Element_Count -The number of elements owned by this geometric entity. Only elements of the same dimension as the
entity are counted (number of hexes in a volume, number of faces on a surface, etc.).

Dimension -The topological dimension of an entity (3 for volumes, 2 for surfaces, etc.).

X_Coord, Y_Coord, Z_Coord - The ¥, y, or z coordinate of the point at the center of the entity's bounding box.
X_Min, Y_Min, Z_Min -The x, y, or z coordinate of the minimum extent of the entity's bounding box.

X_Max, Y_Max, Z_Max - The x, y, or z coordinate of the maximum extent of the entity's bounding box.
Is_Merged - Whether a geometry entity has a merge flag on. All geometric entities have one set by default.

Is_Virtual - A flag that specifies whether an entity is virtual geometry. An entity is virtual if it has at least one virtual
(partition/composite) topology bridge.

Has_Virtual - An entity "has_virtual" if it is virtual itself, or has at least one child virtual entity

Is_Real - An entity "is_real" if it has at least one real (non-virtual) topology bridge.

89

CUBIT 11.0 User Documentation

Precedence

For complicated expressions, which entities are referred to is influenced by the order in which portions of the expression
are evaluated. This order is determined by precedence. Operators with high precedence are evaluated before operators
with low precedence. You may always include parentheses to determine which sub-expressions are evaluated first.Here
all operators and keywords listed from high to low precedence. Items listed together have the same precedence and are
evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >=, <>, = And, Or Except In Of With
Because of precedence, the following two expressions are identical:
Curve With Length + 2* 2 > 10 And Length <= 20 In my_group

Expand(Curve With (((Length + (2*2)) > 10)And(Length <=20))) In (my_group Expand)

Selecting Entities with the Mouse

The following discussion is applicable only to the command line version of CUBIT. See GUI Entity Selection for a
description of interactive entity selection with the Graphical User Interface.

Many of the commands in CUBIT require the specification of an entity on which the command operates. These entities are
usually specified using an object type and ID (see Entity Specification) or a name. The ID of a particular entity can be
found by turning labels on in the graphics and redisplaying; however, this can be cumbersome for complicated models.
CUBIT provides the capability to select with the mouse individual geometry or mesh entities. After being selected, the ID
of the entity is reported and the entity is highlighted in the scene. After selecting the entities, other actions can be
performed on the selection. The various options for selecting entities in CUBIT are described below, and are summarized
in Table 1:

Table 1. Picking and key press operations on the picked entities

Key Action

Cgll’f Pick entity of the current picking type.

shift +
ctrl + |Add picked entity of the current picking type to current picked entity list.

tap | Query-pick; pick entity of current picking type that is below the last-picked entity.

n Lists what entities are currently selected.

Lists basic information about each selected entity. This is similar to entering a List command
for each selected entity.

Lists geometric information about the selection. As if the List Geometry command were issued
for each entity. If there are multiple entities selected, a geometric summary of all selected

g entities is printed at the end, including information such as the total bounding box of the
selection.

) Makes the current selection invisible. This only affects entities that can be made invisible from
! the command line (i.e. geometric entities.)

Draws a graphical scale showing model size in the three coordinate axes. This is a toggle
S action, so pressing the 's' key again in the graphics window will turn the scale off.

90

CUBIT 11.0 User Documentation

ctrl + z 1Zoom in on the current selection.

e Echo the ID of the selection to the command line.

Add the current selection to the picked group. Only geometry will be added to the group (not
a mesh entities). If a selected entity is already in the picked group, it will not be added a second
time.

Remove the current selection from the picked group. If a selected entity was not found in the
r picked group, this command will have no effect.

ctrl + r |Redisplays the model.

c Clear the picked group. The picked group will be empty after this command.

m Lists what entities are currently in the picked group.

d Display and select the entities in the picked group.

ctrl + d |Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

Entity Selection

Query Selection

Multiple Selected Entities
Information about the Selection

Picked Group
Substituting the Selection into Commands

Entity Selection

Selecting entities typically involves two steps:
1. Specifying the type of entity to select

Clicking on the scene can be interpreted in more than one way. For example, clicking on a curve could be intended to
select the curve or a mesh edge owned by that curve. The type of entity the user intends to select is called the picking
type. In order for CUBIT to correctly interpret mouse clicks, the picking type must be indicated. This can be done in one of
two ways. The easiest way to change the picking type is to place the pointer in the graphics window and enter the
dimension of the desired picking type and an optional modifier key. The dimension usually corresponds to the dimension
of the objects being picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick
0 vertices nodes

1 curves edges

2 surfaces all 2D elements

91

CUBIT 11.0 User Documentation

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the mesh entity of corresponding
dimension, otherwise the geometry entity of that dimension is set as the picking type. For example, typing 2 while the
pointer is in the graphics window sets the picking type so that geometric surfaces are picked; typing Shift-1 sets the
picking type so that mesh edges are picked. To differentiate between picking "tris" or "quads" use "pick face" or "pick tri"

The picking type can also be set using the command
Pick <entity_type>

where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex , Tet, Face, Tri, Edge , Node ,
or DicerSheet .

2. Selecting the entities

To select an object, hold down the control key and click on the entity (this command can be mapped to a different button
and modifiers, as described in the section on Mouse-Based View Navigation). Clicking on an entity in this manner will first
de-select any previously selected entities, and will then select the entity of the correct type closest to the point clicked.
The new selection will be highlighted and its name will be printed in the command window.

Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to the next closest entity.
You can continue to press tab to loop through all possible selections that are reasonably close to the point where you
clicked. Shift-Tab will loop backwards through the same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift and control keys while clicking
on an object. You can select as many objects as you would like. By changing the picking type between selections, more
than one type of entity may be selected at a time. When picking multiple entities, each pick action acts as a toggle; if the
entity is already picked, it is "unpicked", or taken out of the picked entities list.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window. There are several other
actions which can then be performed on the picked entity list. These actions are initiated by pressing a key while the
pointer is in the graphics window. Table 1 summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is named picked , and is automatically
created by CUBIT. Other than its relationship to interactive picking, it is identical to other groups and can be operated on
from the command line. Like other groups, both geometric and mesh entities can be held in the picked group. Table 1 lists
the graphics window key presses used with the picked group.

Note: It is important to distinguish between the current selection and the picked group contents. Clicking on a

new entity will select that entity, but will not add it to the picked group. De-selecting an entity will not remove an
entity from the picked group.

Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.
1. The Selection Keyword
You may refer to all currently selected entities by using the word selection in a command; the picked type and ID numbers

of all selected entities will be substituted directly for selection . For example, if Volume 1 and Curve 5 are currently
selected, typing

92

CUBIT 11.0 User Documentation

Color selection Blue
is identical to typing

Color Volume 1 Curve 5 Blue
Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.
2. Echoing the ID of the Selection

Typing an e into a graphics window will cause the ID of each selected entity to be added to the command line at the
current insertion point. This is a convenient way to use entities of which you don't already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the command line using the " key. Note
that this is not the apostrophe key, but rather the left tick mark, usually found at the upper-left corner of the keyboard on
the same key as the tilde (~). For example, a convenient way to set the meshing scheme of a cylinder to sweep would be
as follows:

Volume (hit °, select cylinder, hit e) Scheme Sweep Source Surface (hit °, select endcap, hit e)
Target (select other endcap, hit e)

The result will be something similar to

Volume 1 Scheme Sweep Source Surface 1 Target 2
Notice that you must use the word Surface in the command, or ~ will not select the correct picking type.
3. Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name. The name of the picked group
is picked. For example, if the contents of the picked group are Volume 1 and Volume 2, the command

Draw picked
is identical to
Draw Volume 1 Volume 2

Note that picked is case sensitive, and must be entered as all lowercase letters.
Location, Direction and Axis Specification

Specifying a Location

Specifying a Location on a Curve
Specifying a Direction

Specifying an Axis

Specifying a Plane

Drawing a Location, Direction, or Axis

Many commands require that a location or a direction be specified. Although entering the three floating point numbers
required to uniquely define a vector is perfectly acceptable, it may be more convenient to specify the direction or location
with respect to existing entities in the model.

For example, the following commands might be used for creating straight curves using location and direction specification
described here:

Create Curve [From] Location {options} Location {options}

Create Curve [From] Location {options} Direction {options} Length <val>

93

CUBIT 11.0 User Documentation

Specifying a Location

Some commands require a specified location or point (such as_create curve spline) for the command. A location is
basically an x-y-z position in the model. The following options determine a location specification:

[Position] <xval yval zval>

Last

[At] {Node|Vertex} <id_list>

[On] Curve <id_list> [location on curve options]

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

Center Curve <id_list>

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction {options}] [Direction

{options}

(] Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits
<val>] [Ray Radius <val>]

. Between { Location <options> Location <options>} | { Location <options> Project {Curve|Surface} <id> } [Stop]
Fraction <val>] }

[Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance <val>}]
[Swing [all] [About] Axis {options} Angle <ang>]
Multiple Location Specification

Position (XYZ values)

[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case the following two
commands both draw a location at the coordinates (1, 2, 3), as the Position keyword is optional:

draw location position 12 3
draw location 12 3

Last Location Used in a Command
Last

The last option recalls the last location used in a command. For example, if the following command is entered after the
above position commands a location would be drawn at the position (1, 2, 3).

draw location last

Last locations do not carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no location
has been used during the session.

Node or Vertex

[At] {Node|Vertex} <id_list>
Referring to a node or vertex simply returns the coordinates of that node or vertex. The command can also handle
multiple locations where multiple locations are needed to complete the command string. The following draws a location at

the coordinates of Vertex 5:

draw location vertex 5

On a Curve

Various options are available to specify a location on a curve. See the section Specifying a Location On a Curve for
details.

94

CUBIT 11.0 User Documentation

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]
If a surface is used to specify a location without other options, the geometrical center of the surface is found (the center
keyword is optional - the default). Otherwise, you can specify another general location and that location is projected to the
surface. For example, the following command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 500

Any valid location options listed on this page can be used to specify the location that is projected to the surface.

Center
Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.

Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction
{options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group, in the specified direction.
For example, the following places a vertex on a surface at the point of maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object by firing a ray at the object and
determining the intersections. A ray can be fired at a list of bodies, volumes, surfaces, curves, or vertices. The fire ray
command is:

Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids>
[Maximum Hits <val>] [Ray Radius <val>]

The location options are described on this page. The direction options are described under Specifying a Direction. The
user can specify the maximum number of hits that he wishes to receive back from the command. If this value is omitted,
the command will return all intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is
the distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the geometry engine default
is used.

Between

Between {Location <options> Location <options>} | {Location <options> Project
{Curve|Surface} <range>} [Stop] [Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An optional fraction can be
given to specify the fractional distance from the first location to the second location or entity. For example, the following
will draw a location at (5, 0, 0):

draw location between location 0 0 0 location 100 0
The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):

draw location between location 0 0 0 location 10 0 O fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0, 0, 0) and the projected
location is found.

95

CUBIT 11.0 User Documentation

Of course, any valid location can be used in the command. In the following example a location at the top center of the
brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and 5.

Note: you can "swing" a location about an axis, "rotate" a direction about another direction, "revolve" an axis about
another axis and "spin" a plane about an axis. The only reason Cubit needs to use different keywords for each entity type
is because the Cubit command language does not support expressions (as in using parentheses). The keyword stop is
also used in the location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop keyword will
aid in parsing out extended location specifications. Insert a stop after the first location to let the parser know that where
the specifications begin and end.

Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> |
Direction {options} Distance <val>}

Any location can be optionally moved either a xyz distance or a certain distance in a given direction. As many moves as
desired can be strung together. For example, the following will return a location at (5, 0, 0):

draw location 000 move 500

These examples add another move that basically moves the location (5, 0, 0) in a direction 45 degrees up and to the right
a distance of 10 (all three commands are equivalent - see sections on directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} O

draw location 0 0 0 move 50 0 move direction 1 1 0 distance 10
draw location 0 0 0 move 50 0 move direction 1 0 O rotate about 0 0 1 angle 45 dist 10

Swing

Swing [All] [About] Axis {options} Angle <ang>
Any location can be "swung" (rotated) about an axis by a certain angle. (See the section on specifying an axis for the axis
syntax). As with moves, multiple swings can be strung together. The following example rotates the location (2.5, 5, 5)
thirty degrees about an axis defined by Curve 11. Note that the right-hand rule is used to determine the direction of the
swing about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Axig= Curve 11

(starf) (2.5, 5, 5

Figure 1 - Swinging a Location

Multiple Location Specification

Location {options} Location {options}...

96

CUBIT 11.0 User Documentation

Multiple location specifications can be used in a single command. For example, the following command uses several
locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and (7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9

Previewing a Location

Sometimes it is advantageous to preview a location before using it in a command. A location can be previewed with the
Draw command. All of the options that can be used to specify locations in a command can be used to preview locations
as well. See above for a description of these options. The command syntax is:

Draw Location {options}

Specifying a Location on a Curve or Curves

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). The
following are the options for specifying a location (or locations in the case of the segment option) on a curve:

{ MIDPOINT | Start | End | }

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]

Distance <val> [From {Vertex|Curve|Surface} <id> | start | end]

{{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex} <id>}
Extrema [Direction] {options} [Direction {options}] [Direction {options}]

Segment <num_segs>

Crossing {Curve|Surface} <id_list> [Bounded|Near] }

Previewing a Location

Start, Midpoint, or End
{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve. By default, the midpoint is the
understood location unless another location is specified.

Fraction
Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve. By default, the fraction references
the start of the curve; however, you can optionally specify which vertex to reference from.

Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | start | end] |
The distance option not only can find a location that is a certain distance along the curve from the start or end of the
curve, but can also find a location (or locations if there is more than one solution) on a curve that is a specified distance

from another curve or a surface. If the From Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

97

CUBIT 11.0 User Documentation

Churve 2

Curre 13
Distance = 7.0 ¢

¥ Resultant

Location

Figure 1 - Location on a Curve a Distance from Another Curve

{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval> |{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.

Extrema
Extrema [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option finds the maximum value location along a curve in a specified direction. For example:
create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.

Segment
Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the curve into equal length
"segments" (of course the curve is not modified). You must specify a minimum of two segments (if two segments were
specified a location would be found at the center of the curve). The following example results in 4 locations:

draw location on curve 1 segment 5

create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve

Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near] }

98

CUBIT 11.0 User Documentation

The crossing option finds locations at the intersection of the curve and another curve or surface. By default, the curve(s)
and surface are extended to infinity and the intersections are calculated; if the bounded option is specified only
intersections that lie on the bounded entities will be returned. The near option is valid only for two linear curves. If near is
specified the nearest location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that can be used for specifying a
location on a curve can be used to preview a location on a curve. See above for a description of these options. The
command syntax is:

Draw Location On Curve <curve id> {options}

Specifying a Direction

Some commands require a specified a direction or vector for the command. A direction is basically a xyz vector in the
model. The following options determine a direction specification:

[Vector] <xval yval zval>

Last

x|y|z|nx|ny|nz

[On] | [Tangent] [At] Curve <id> {location on curve options}
[On] | [Normal] [At] Surface <id> [Location {options}]

[From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} | [Entity]
{Node|Vertex|Curve|Surface} <id>}

Rotate {options}
[Cross [With] Direction {options}]

Reverse

Vector (XYZ values)

[Vector] <xval yval zval>
The most basic way to specify a direction is to just give the vector x-y-z components of the direction. The given vector
need not be a unit vector. The following three commands simply draw a direction in the x-direction (1, 0, 0) as the Vector
keyword is optional and unit vectors are not required:

draw direction vector 100

draw direction 100
draw direction 1000

Last Direction Used
Last

The last option recalls the last direction used in a command. For example, if the following command is entered after the
above vector commands a direction location would be drawn in the x-direction (1, 0, 0).

draw direction last

Last directions do not carry over from CUBIT session to CUBIT session. The last direction defaults to (1, 0, 0) if no
direction has been used during the session.

X|Y|Z|Nx|Ny|Nz
x]y|z|nx|ny|nz

The x]y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction, negative y direction and
negative z direction respectively.

99

CUBIT 11.0 User Documentation

On Curve Tangent
[On] | [Tangent] [At] Curve <id> {location on curve options}

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at keywords are optional, as
well as the location on the curve. If no location is specified, the tangent at the start vertex of the curve is found. See the
section above, Specifying a Location on a Curve, for details on how to specify where along the curve the tangent vector is
found.

draw direction curve 1

draw direction on curve 1

draw direction tangent at curve 1

draw direction tangent at curve 1 distance 3

draw direction tangent at curve 1 fraction .5

draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve

On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]
The surface option simply finds a normal vector on a surface. Note that the "on", "normal" and "at" keywords are optional,
as well as the location on the surface. If no location is specified, the normal vector at the center of the surface is found. If

a location is specified, the location is projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 120

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options} | [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location to an entity. If the second
specification is an entity, the first location is projected to the entity to find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are generally optional.
However, it is sometimes necessary to remove ambiguity from the previous location specification. For example, the
following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3
In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the desired behavior is to find
the location on curve 1 as a distance of 2.0 along the curve from the start of the curve, and project it to surface 3 to find
the direction. The following commands (all equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3

draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

100

CUBIT 11.0 User Documentation

Rotate
[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together as many rotations as
necessary. For example:

draw direction 1 0 O rotate about z 135 rotate about curve 1 angle 50
Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {{About] | Towards} Direction {options} Angle <val>}
[Rotate (options)] [Origin (location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another rotate keyword in the
options indicated that multiple nested rotations are permitted.

Cross

[Cross [With] Direction {options}]
The cross option allows you to find the vector cross product of the direction with another direction.
Reverse

[Reverse]

This keyword simply reverses the direction specification.

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction may be previewed using the Draw
command. The direction options are described above. See Specifying a Location for a list of location options.

Draw Direction {direction options} [Location (location options)]
Specifying an Axis

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. An axis is simply a vector with a specified origin. The following options determine an axis
specification:

Last
Specify a direction and a location
Revolve an axis about an axis

Last
Last

The last option recalls the last axis used in an axis command. The last axis does not carry over from CUBIT session to
CUBIT session.

Specify an origin and a vector

{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle <val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the command requires the
axis direction first because the origin defaults to 0 0 0 when not specified. An example of specifying an axis to draw a
location using the swing command is as follows:

101

CUBIT 11.0 User Documentation

draw location 1 0 0 swing about axis direction z ang 45

{final)

AGLTD

{1.0,0

Figure 1 - Swinging a point about the z-axis

The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and an origin at 0 0 0.

Revolve an axis about an axis
[Axis {options} Revolve [About] Axis {options} Angle <val>]

To revolve one axis around another use the revolve keyword. The following example revolves the first axis (defined by the
y-axis and origin) around the second axis (defined by the z-axis and origin) by 45 degrees and draws the result.

draw axis direction y revolve axis direction z angle 45

i
¥

fiha

axis %
20,00

Figure 2 - Revolving an axis about another axis

Previewing an Axis

Sometimes it is helpful to preview an axis before using it in a command. An axis may be previewed using the Draw
command. The options for previewing an axis are the same as the ones described above.

Draw Axis {options}

Specifying a Plane

Some commands require a specified plane (such as sweep curve target) for the command. The following options
determine a plane specification:

102

CUBIT 11.0 User Documentation

{Location|Vertex|Node} <origin> Direction <normal>

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>
{Location|Vertex|Node} <2 locations> Direction <vector on the plane>
{Location|Vertex|Node} <3 locations>

Surface <id> [at location <loc>]

[Normal To] Curve <id> [loc on curve options]

Direction <Normal> Coefficient <val>

X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|YXx

Last

The following options apply to all of the plane specficiations listed above:

. Offset <val>

e [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance <val>]]
e [[To] Location {options}]

e [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector
{Location|Vertex|Node} <origin> Direction <normal>
The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction 011
draw plane vertex 1 direction tangent at curve 1

&

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be found at_Specifying a
Direction.

Location and Two Vectors on the Plane
{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

103

CUBIT 11.0 User Documentation

Figure 2. Specifying a plane with a point and 2 in-plane vectors

Two Locations and Vector on the Plane
{Location|Vertex|Node} <2 locations> Direction <vector on the plane>

You can also specify 2 locations and 1 direction on the plane to define the plane.

draw plane vertex 1 2 direction 011

Figure 3. Specifying 2 locations and 1 direction on the plane

Three Points on the Plane
{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified using Location Specification.

draw plane vertex 1 2 3
draw plane vertex 1 2 location 345

104

CUBIT 11.0 User Documentation

Figure 4. A plane specified by three points

Plane defined by a Surface
Surface <id> [at location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the optional location specifier
can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 400

Figure 5. Specifying a Tangent plane to a Surface

Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

105

CUBIT 11.0 User Documentation

The Normal to Curve option allows you to define a plane by using an existing curve. The direction of the curve will define
the surface normal of the new plane. The optional location argument specifies which point to use on the curve if it is not a
straight curve. If no location is specified the plane will originate at the midpoint of the curve. See Specifying a Location on
a Curve for more information on location options.

br x 10

cylinder radius 3z 12
subtract body 2 from 1
webcut body 1 xplane

draw plane normal to curve 30

Cunve 30

Figure 6. Draw Plane Normal to Curve

Normal Vector and Coefficient
Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and an offset from the origin. The
Coefficient argument specifies how far to offset the plane from the origin

draw plane direction 1 2 3 coefficient 3

Coordinate Plane
X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|YX

A plane can be defined from any coordinate plane or combination thereof. The coordinate planes will pass through the
origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used

Last

The last option will return the plane most recently used in a command. Last locations do not carry over from CUBIT
session to CUBIT session. The last location defaults to (0, 0, O) if no location has been used during the session.

The following options apply to all of the plane specification methods described above.

e [Offset <val>]

106

CUBIT 11.0 User Documentation

e [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance
<val>]]

[[To] Location {options}]
[Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.

The move option will displace the plane in the specified directions by the specified distance. The direction options are
outlined on Specifying a Direction.

The location option will move the plane to a specified location without rotating it. See Specifying a Location for location
options.

The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.

Previewing a Plane

Sometimes it is advantageous to preview a plane before using it in a command. A location can be previewed with the
Draw command. All of the options that can be used to specify locations in a command can be used to preview locations
as well. See above for a description of these options. The command syntax is:

Draw Plane {options}

Drawing a Location, Direction, or Axis

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). This
location can be previewed with the following options:

A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
An xyz position that is moved to the closest point on the given curve.

The position of a vertex that is moved to the closest point on the given curve.

N

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position <xval><yval><zval>
| Close_To Vertex <vertex_id>} [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. To draw a preview of an axis use the following command:

Draw Axis {options}

Some commands require a specified location or point (such as_create curve spline) and it is sometimes advantages to
view a location before modifying or creating geometry. To draw a preview of a location use the following command:

Draw Location {options}

Listing Information

The List commands print information about the current model and session. There are five general areas: Model
Summary, Geometry, Mesh, Special Entities, and CUBIT Environment. The descriptions of these areas includes example
output based on the model generated by a journal file listed below. The model consists of a 1x2x3 brick meshed with
element size 0.1.

List Model Summary

List Geometry

List Mesh

List Special Entities

List CUBIT Environment

Measuring Distances between Entities

107

CUBIT 11.0 User Documentation

Journal File Used for List Examples

brickx1y2z3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group "my_surfaces" add surface 1 to 3
surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"
surface 5 name "RightSurface"
surface 6 name "TopSurface"

List Model Summary

The following commands print identical summaries of the model: the number of entities of each geometric, mesh, and
special type

List Model

List Totals
The following output is generated from the list model command.
CUBIT> list model

Model Entity Totals:
Geometric Entities:
0 assemblies
0 parts
2 groups
1 bodies
1 volumes
6 surfaces
12 curves
8 vertices
Mesh Entities:
6000 hexes
0 pyramids
0 tets
7876 faces
0 tris
9854 edges
7161 nodes
Special Entities:
1 element blocks
1 sideSets
1 nodesets

Journaled Command: list model

List Geometry

The following commands list information about the geometry of the model.
List Names [Group|Body|Volume|Surface|Curve|Vertex]All]
List {Group|Body|Volume|Surface|Curve|Vertex} <range> [ids]
List {geom_list} [Geometry|Mesh [Detail]]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

108

CUBIT 11.0 User Documentation

The first command lists the names in use, and the entity type and id corresponding to each name. Specifying all lists
names for all types; other options list names for a specific entity type. The names for an individual entity can be obtained
by listing just that entity. Sample output from the list names surface command is shown below. This output shows that, for
example, Surface 2 has the name "~ BackSurface ".

Name __Type__ Id _Propagated_
BackSurface Surface 2 No
BottomSurface Surface 3 No
FrontSurface Surface 1 No
LeftSurface Surface 4 No
RightSurface Surface 5 No
TopSurface Surface 6 No

List Names Example

The second command provides information on the number of entities in the model and their identification numbers. If a
range is given then detailed information is given on each entity in that range, unless the ids option is also given. If the ids
option is used, just a list of ids is printed. This list can be very useful for large models in which several geometry
decomposition operations have performed. Sample output from the list surface command is shown below.

CUBIT> list surface ids
The 6 surface ids are 1 to 6.

CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a <range> gives a brief synopsis of the
local connectivity of the model, e.g. one can list the ids of the surfaces containing vertex 2; as shown in the listing below..
An intermediately detailed synopsis can be obtained by placing the range of entities in a group, then listing the group.

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.

CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
Name Type Id +is meshed Count Size

FrontSurface Surface 1 map+ 1H 0.1

TopSurface Surface 6 map+ 1H 0.1
RightSurface Surface 5 map+ 1H 0.1

Using 'List' for Querying Connectivity.

The third command provides detailed information for each of the specific entities. This information includes the entity's
name and id, its meshing scheme and how that scheme was selected, whether it is meshed and other meshing
parameters such as smooth scheme, interval size and count. The entity's connectivity is summarized by a table of the
entity's subentities and a list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.

Specifying geometry will additionally list the extent of the entity's geometric bounding box, the geometric size of the entity,
and depending on entity type, other information such as surface normal. See also the list {entities} x command below. If
multiple volumes, surfaces, or curves are selected, it will list the total volume, area, or length of all entities, and the total
geometric bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid of the all of the
volumes.

Specifying mesh will additionally list the number of mesh entities of each type interior to the entity and on bounding
subentities. Mesh detail will list the ids of the mesh entities as well, following the format of the list ids command above.

The fourth command lists the entities sorted by either the X, y, or z coordinate of their geometric center. For example, in a
large, basically cylindrical model centered around z-axis, it is useful to list the surfaces of a volume sorted by z to identify
the source and target sweeping surfaces.

109

CUBIT 11.0 User Documentation

List Mesh

The following commands list mesh entity information.

List { Hex | Face | Edge | Node } <id_range>

List { Hex | Face | Edge | Node } <id_range> IDs
For both of these commands, the range can be very general, following the general entity parsing syntax. The first
command provides detailed information. For an entity, the information includes its id, owning geometry, subentities and

superentities. For a hex, the Exodus Id is also listed. For a node, its coordinates are listed. The second command just lists
the entity ids, and is usually used in conjunction with complex ranges.

List Special Entities

List {special_type} [range]
Special entities include (element) blocks, sidesets and nodesets (representing boundary conditions). Like the list
geometry and list mesh commands, if no range is specified then the number of entities of the given type is summarized.
Otherwise, listing a special entity prints the mesh and geometry it contains.

(Some special entities are of interest mainly to developers and are not described here, e.g. whisker sheets, whisker
hexes, and dicer sheets.)

List Cubit Environment

The user may list information about the current CUBIT environment such as message output settings, memory usage, and
graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

e Info (Information) messages tell the user about normal events, such as the id of a newly created body, or the
completion of a meshing algorithm.

® Warning messages signal unusual events that are potential problems.

® Error messages signal either user error, such as syntax errors, or the failure of some operation, such as the
failure to mesh a surface.

Echo messages tell the user what was journaled.

Debug messages tell developers about algorithm progress. There are many types of Debug messages, each
one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not printed. Information,
Warning and Debug message printing can be turned on or off (or toggled) with a set command; error messages are
always printed. Debugging output can be redirected to a file. Current message printing settings can be listed.

List {echo | info | errors | warning | debug }

Set {echo | info | warning } [on|off]

[Set] Debug <index> [on|off]

[Set] Debug <index> File <'filename'>

[Set] Debug <index> Terminal
Message flags can also be set using command line options, e.g. -warning={on|off} and -information={on|off}. Debug
flags can be set on with -debug=<setting>, where <setting> is a comma-separated list of integers or ranges of integers

denoting which flags to turn on. E.g. to set debug flags 1, 3, and 8 to 10 on, the syntax is -debug=1,3,8-10.

In addition to the major categories, there are some special purpose output settings.

110

CUBIT 11.0 User Documentation

[Set] Logging {off|on file <'filename'> [resume]}

List Logging
If logging is enabled, all echo, info, warning, and error messages will be output both to the terminal and to the logging file.
The resume option will append to the lodfile, if it exists, instead of writing over it. If the logfile doesn't already exist, it will
be created.

List Journal Title "<title_string>"

The List Journal command lists which types of CUBIT commands will be journaled and the file to which the journaled
commands are being written.

List Title

The List Title command will list the title to be written to the Exodus file. To assign a title to an exodus file, use the Title
command.

List Default Block

Set Default Block {ON]off}
The List Default Block command lists which type of geometric entities for which blocks will automatically be generated at
export if no other blocks have been specified. The Set Default Block command will toggle whether these default blocks
are written, or not, during the export operation when no other blocks have been specified.

List Settings
The List Settings command lists the value of all the message flags, journal file and echo settings, as well as additional
information. The first section lists a short description of each debug flag and its current setting. Next come the other

message settings, followed by some flags affecting algorithm behavior.

Sample output

CUBI T> |ist settings

Debug Flag Settings (flag nunber, setting, output to, description):

1 _CFF t erm nal Debug Graphics toggle for sone debug
opti ons.
2 OFF termnal VWi sker weavi ng i nformation
3 OFF termnal Timng informati on for 3D Meshing routines.
4 OFF termnal Graphi cs Debuggi ng (Draw ngTool)
5 OFF ternmnal Fast Q debuggi ng
6 OFF terminal Submappi ng graphi cs debuggi ng
7 OFF termnal Kni fe progress whi sker weavi ng i nformation
8 OFF terminal Mappi ng Face debug / Linear Programm ng
debug
9 OFF ternminal Paver Debuggi ng

111

CUBIT 11.0 User Documentation

echo = On

info = On

j our nal = On

journal graphics = Of

journal nanes = On

journal aprepro = On

journal file = 'cubitll.jou
war ni ng = On

| oggi ng = Of

recordi ng = Of

keep invalid nesh = Of

def aul t nanes = Of

defaul t bl ock = Vol unes

catch interrupt = On

nane repl acement character ="' ', suffix character ="' @

Mat ching Intervals is fast, TRUE

multiple curves will be fixed per iteration

Note in rare cases 'slow , FALSE, may produce better mneshes.
Match Intervals rounding is FALSE

intervals will be rounded towards the user-specified intervals.

Graphical Display Information

List View

List view prints the current graphics view and mode parameters; See Graphics Window .

Memory Usage Information

Users are encouraged to use Unix commands such as “top' to check total CUBIT memory use. Developers may check
internal memory usage with the following command:

List Memory ['<object type>']

Without an object type, the command prints memory use for all types of objects.

Entity Measurement

To output various properties of entities, the following Measure command options are available.

112

CUBIT 11.0 User Documentation

(] Measure Between
(] Measure Small

(] Measure Angle

Measure Between

Measure Between { { Vertex|Curve|Surface |Volume|Node} <id1> | Location <option> | Plane
<options> | Axis <options>} With { {Vertex|Curve|Surface|Volume|Node} <id2> | Location
<options> | Plane <options> | Axis <options>}

Measure Between {Surface|Curve} <id1 > [Surface|Curve] <id2> [Node]

Measure Between {Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id1> with
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id2>

The Measure Between command outputs the distance from one entity, location, plane, or axis to the next. The two
entities in the command should be separated by the word "with".The result will always be the minimum distance between
entities. For example, measuring between two spheres will output the minimum distance between them, not the distance
between centroids. The example shown below will output the minimum distance between vertex 1 and surface 2.

measure between vertex 1 surface 2
The second form of the command is just for surfaces or curves and contains the Node argument. This argument attempts
to measure between corresponding nodes on a pair of surfaces or curves. The command tries to determine a one-to-one
mapping of nodes between the pair. It returns the greatest distance between any two nodal pairs, least distance between
any two nodal pairs, and average distance between all of the nodal pairs. The mapping algorithm works best on surfaces
if they are parallel.

The last form of the command measures between any geometry or mesh entities. The measurement to the mesh entities
is to their center (i.e. the averaged vector location of all of the nodes belonging to the mesh entity).

Measure Small

Measure Small {Length|Area|Volume]|All} {Body|Surface} <id_list>
The Measure Small command locates all of the lengths, areas, or volumes smaller than the Measure Small Tolerance
setting. Entities meeting the small tolerance criteria are listed in the output window and typically highlighted in the view
port. The following two commands set the small tolerance to 0.1 and output all of the curves within body 1 with lengths at
or below the small tolerance.

set measure small tolerance 0.1

measure small length body 1

Measure Angle

Measure Angle { Direction <options> | Plane <options> | Axis <options> } with { Direction <options> |
Plane <options> | Axis <options> }

The Measure Angle command displays the interior angle between the two entered entities. When a plane and a direction
are specified, the angle between the direction vector and its projection into the plane is displayed. The measured angle
represents the distance between the orientations of entities, and does not require the entities to intersect. Angles of model
features can be measured by using the various options associated with the Direction, Planes, and Axis commands.

measure angle direction tangent curve 1 with plane surf 1

113

CUBIT 11.0 User Documentation

Geometry

CUBIT Geometry Formats
Geometry Creation

Geometry Transforms

Geometry Booleans

Geometry Decomposition
Geometry Cleanup and Defeaturing
Geometry Imprinting and Merging
Virtual Geometry

Geometry Orientation

Geometry Groups

Geometry Attributes

Parts, Assemblies, and Metadata
Geometry Deletion

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is also mesh-based geometry,
and a Granite port for Pro Engineer files. Other solid model kernels are planned. Geometry is imported or created within
CUBIT. Geometry is created bottom-up or through primitives. CUBIT imports ACIS SAT files. CUBIT can also read STEP,
IGES, and FASTQ files and convert them to the ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD
systems can write SAT files directly.

Once in CUBIT, an ACIS model is modified through booleans. Without changing the geometric definition of the model, the
topology of the model may be changed using virtual geometry. For example, virtual geometry can be used to composite
two surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The model can be healed inside
CUBIT.

CUBIT Geometry Formats

ACIS
Granite
(] Mesh-Based Geometry

Setting the Geometry Kernel

The geometry kernel can be switched between ACIS, Mesh-Based Geometry, and Granite from the command line using
the following command:

set geometry engine {acis|facet|granite}

The geometry engine will automatically be set when importing a model.

Terms

Before describing the functionality in CUBIT for viewing and modifying solid geometry, it is useful to give a precise
definition of terms used to describe geometry in CUBIT. In this manual, the terms topology and geometry are both used to
describe parts of the geometric model. The definitions of these terms are:

Topology: the manner in which geometric entities are connected within a solid model; topological entities in CUBIT
include vertices, curves, surfaces, volumes and bodies.

Geometry: the definition of where a topological entity lies in space. For example, a curve may be represented by a

straight line, a quadratic curve, or a b-spline. Thus, an element of topology (vertex, curve, etc.) can have one of several
different geometric representations.

114

CUBIT 11.0 User Documentation

Topology

Within CUBIT, the topological entities consist of vertices, curves, surfaces, volumes, and bodies. Each topological entity
has a corresponding dimension, representing the number of free parameters required to define that piece of topology.
Each topological entity is bounded by one or more topological entities of lower dimension. For example, a surface is
bounded by one or more curves, each of which is bounded by one or two vertices.

Bodies and Volumes

A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfaces and volumes. The use of
Body is not required, and is in fact deprecated in favor of using Volume. Bodies may still be used for grouping volumes,
but it is suggested to use Groups instead.

Although a Body may contain groups of Surfaces or Volumes, for most practical purposes within the CUBIT environment,
a single Volume or Surface will belong to a single Body. For typical three-dimensional models, this means that there
should be one Body for every Volume in the model, where the default Body ID is the same as the Volume ID. For this
reason, in many instances the term Volume and Body are used interchangeably, although it is more consistent to always
refer to Volumes and Volume IDs, and only use Bodies when absolutely necessary.

Non-Manifold Topology

In many applications, the geometry consists of an assembly of individual parts, which together represent a functioning
component. These parts often have mating surfaces, and for typical analyses these surfaces should be joined into a
single surface. This results in a mesh on that surface which is shared by the volume meshes on either side of the shared
surface. This configuration of geometry is loosely referred to as non-manifold topology.

ACIS Geometry Kernel

ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS third party libraries directly
within the program. The ACIS third party libraries are used extensively within CUBIT to import, export and maintain the
underlying geometric representations of the solid model for geometry decomposition and meshing. There are many ways
to get geometry into the ACIS format. ACIS files can be exported directly from several commercial CAD packages,
including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third party ACIS translators are also available for converting
from native formats such as Pro Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.

Importing and creating geometry using the ACIS geometric modeling kernel currently provides the widest set of
capabilities within CUBIT. All geometry creation and modification tools have been designed to work directly on the ACIS
representation of the model.

Granite Geometry Kernel

Granite is a proprietary third party geometry kernel that is incorporated directly into CUBIT. Granite is distributed through
Parametric Technology Corporation, and is the native format of Pro Engineer. Previously, CUBIT could only read Pro/E
files that were translated into ACIS formats, but CUBIT can now import Pro/E files directly. Most of the commands that
work for ACIS geometry will also work for Pro/E, with a few exceptions, as noted below.

Limitations

Geometry Creation

e Create Body from Surfaces: Cannot create body from surfaces with command: “create body surface
<id_range>"

® Sweeping Curves: When creating bodies or surfaces by sweeping curves, all curves must lie in a plane and
sweep direction must be orthogonal to that plane. Granite is able to sweep curves about an axis, creating a
separate body for each swept curve.

e Sweeping Surfaces: When sweeping surfaces, surfaces must be planar and sweep direction must be
orthogonal to the surfaces. Granite is able to sweep planar surfaces about an axis.

e Create Surface from Bounding Curves: To create a surface from a set of bounding curves (“create surface
from curve <id_range>"), all curves must lie in the same plane.

115

CUBIT 11.0 User Documentation

Creating Offset Curves: Granite does not have the ability to extend offset curves to meet each other when a
complete or incomplete loop of curves is offset. So the following rules apply to the create curve offset
commands:

O Multiple linear curves cannot be offset in one command
O Specified curves must lie in a plane
0 Specified curves must form a single connected chain
Extending Curves: Granite cannot extend multiple linear curves in one command. Granite has no capability to
extend offset curves to meet one another.
Multi-volume Bodies: Multi-volume bodies cannot be produced in Granite.
Midsurface Creation: Granite does not support non-planar midsurface creation.

Imprinting

Surface: Surface-surface intersections do not cause any imprinting to occur. A curve must lie ON a surface to
be imprinted on it.

Hardlines and Hardpoints: Hardlines and hardpoints cannot be created from an imprint, as granite does not
support hardpoints or hardlines.

Tolerant Imprinting: Tolerant imprinting is not supported in Granite.

Decomposition

Webcutting by Sweeping: Sweep webcutting is only supported for planar surfaces that are swept in a direction
normal to their surface. Linear curves can be swept, but only in a direction that is normal to their length.
Sweeping multiple surfaces and curves is not supported. Also, webcutting groups containing volumes and
bodies will only cut the bodies.

Webcutting with Loops: Webcutting with a loop only succeeds when the loop is planar.

Tweak: Limited support for tweak command.

Miscellaneous Geometry Options

Attribute

Export

Split Periodic: Split periodic command not supported (Granite does not support periodic geometry.)
Healing: Healing commands not supported.

Vertex Removal: Vertex removal not supported.

Surface Removal: Removing surfaces forming a closed loop is not supported.

Regularize: Regularize command not supported.

Validate: Validate command not supported.

Tweak -Tweak cone command not currently supported.

Unite -Unite not supported with sheet bodies.

Scale - When you uniformly scale a granite volume/body, the resultant body does not maintain the ids of the old
one; a totally new body is created.

Propagation

During a decomposition operation, if a curve is split down the middle into 2 new identical curves which are
exactly the same as the original curve, attributes that were on the original curve do not get propagated to the
new curves.

The Granite format supports export to the following file formats.

Import

116

IGES files

STEP files

ACIS SAT files

Granite files. Note: These files can only be read into CUBIT. Pro/E cannot read these files.

CUBIT 11.0 User Documentation

The Granite format supports import of the following file formats

Pro/E part files

Pro/E assembly files

IGES files

STEP files

Granite files exported from cubit
Granite Neutral files (not tested yet)

Mesh-Based Geometry

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has been developed
specifically for use with CUBIT. Most of CUBIT's mesh generation tools require an underlying geometric representation. In
many cases, only the finite element model is available. If this is the case, CUBIT provides the capability to import the finite
element mesh and build a complete boundary representation solid model from the mesh. The solid model can then be
used to make further enhancement to the mesh. While the underlying ACIS geometry representation is typically non-
uniform rational b-splines (NURBS), Mesh-Based Geometry uses a facetted representation. Mesh-Based Geometry can
be generated by importing either an Exodus |l format file or a facet file.

Creating Mesh-Based Geometry Models

Improving Mesh-Based Geometry Models for Meshing
Meshing Mesh-Based Models

Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done with mesh-based
geometry. While all mesh generation operations are available, only some of the geometry operations can be used. For
example, the following can be done with geometric entities that are mesh-based:

e Geometry Transformations
(] Merging
e Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

e Booleans
(] Geometry Decomposition

(] Geometry Clean-Up

Creating Mesh-Based Geometry Models

Mesh based geometry models can be created in one of two ways

(] Importing Exodus Il files
e Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant differences:
Exodus Il files

Exodus Il contains a mesh representation that may include 3D elements, 2D elements, 1D elements and even 0D
elements. It may also contain deformation information as well as boundary condition information. The import mesh
geometry command is designed to decipher this information and create a complete solid model, using the mesh faces as
the basis for the surface representations. Exodus Il is most often used when a solid model that has previously been
meshed requires modification or remeshing. Importing an Exodus Il file will generate both geometry and mesh entities,
assigning appropriate ownership of the mesh entities to their geometry owners. Deleting the mesh and remeshing, refining
or smoothing are common operations performed with an Exodus Il model.

117

CUBIT 11.0 User Documentation

Facet files

The facet file formats supported by CUBIT are most often generated from processes such as medical imaging,
geotechnical data, graphics facets, or any process that might generate discrete data. Importing a facet file will generate a
surface representation only defined by triangles. If the triangles in the facet file form a complete closed volume, then a
volume suitable for meshing may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing tools provided in CUBIT, it
is also possible to use the triangle facets themselves as the basis for an FEA mesh.

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging processes are not of sufficient
quality to use as geometry representations for mesh generation. As a result, CUBIT provides a limited number of tools to
assist in cleaning up or repairing triangulated representations.

1. Using tolerance on STL files

Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL provides a tolerance
option to merge near-coincident vertices.

2. Using the stitch option on AVS and facet files

The stitch option on the import facets|avs command provides a way to join triangles that otherwise share near-concident
vertices and edges. This is useful for combining facet-based surfaces to generate a water-tight model.

3. Using the improve option on facet files.

The improve option on the import facets command will collapse short edges on the boundary of the triangulation. This
option improves the quality of the boundary triangles.

4. Smoothing faceted surfaces.

Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh elements may be smoothed,
facets may also be smoothed in CUBIT using the following command

Smooth <surface_list> facets [iterations <value>] [free] [swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a simple Laplacian smoothing
algorithm which has additional logic to make sure it does not turn any of the triangles in-side out. It also determines a local
surface tangent plane and projects the triangle vertices to this plane to ensure the volume will not "shrink". The iterations
option can be used to specify the number of Laplacian smoothing operations to perform on each facet vertex (The default
is 1).

The free option can be used to ignore the tangent plane projection. Used too much, the free option can collapse the
model to a point. One of two iterations of this option may be enough to clean up the triangles enough to be used for a
finite element mesh.

The swap option can be used to perform local edge swap operations on the triangulation. The quality of each triangle is
assessed and edges are swapped if the minimum quality of the triangles will improve.

5. Creating a thin offset volume

Offset surfaces may be generated from an existing facet-based surface. This would be used in cases where a thin
membrane-like volume might be required where only a single surface of triangles is provided. This command may be
accomplished by using the standard create body offset command

The result of this command is a single body with an inside and outside surface separated by a small distance which is
generally suitable for tet meshing. This command is currently only useful for small offsets where self-intersections of the
resulting surface would be minimal. It is most useful for bodies that may be initially composed of a single water-tight
surface.

6. Creating volumes from surfaces

A mesh-based geometry volume can be created from a set of closed surfaces. This can be accomplished in the same
manner as the standard create body surface command

Create Body Surface <surface_id_range>

118

CUBIT 11.0 User Documentation

This command is limited to surfaces that match triangles edges and vertices at their boundary. The command will
internally merge the triangles to create a water-tight model that would generally be suitable for tet meshing.

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a scheme, defining a size and
using the mesh command. This standard method of mesh generation can be somewhat time consuming and error prone

for complex facet models with thousands of triangles. CUBIT also provides the option of using the facets themselves as a
surface triangle mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> from facets

This command will generate triangular finite elements for each facet on the surface. If the entity_list is composed of one
or more volumes, then the tetrahedral mesh will automatically fill the interior. This method is useful when further cleanup
and smoothing operations are needed on the triangles after import.

Import facets <filename> make_elements

The make_elements on the import facets command will generate the triangular finite elements on the surface at the time
the facets are read and created. This option is useful if no further modifications to the facets are necessary.

Creating triangular finite elements in this manner can greatly speed up the mesh generation process, however it is limited
to non-manifold topology. If the triangular elements are to be used for tetrahedral meshing (ie. all edges of the
triangulation should be connected to no more than two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following methods:

e Exporting to an Exodus Il File
(] Exporting to a facet file

Exodus Il

Exporting to an Exodus Il file saves the finite element mesh along with any boundary conditions placed on the model. It
will not save the individual facets that comprise the mesh-based geometry surface representation. Importing an Exodus Il
file saved in this manner will regenerate the surfaces only to the resolution of the saved mesh.

Facet files

CUBIT also provides the option to save just the surface representation to a facet or STL file. The following commands can
be used for saving facet or STL files:

Export Facets 'filename' <entity_list> [overwrite]
Export STL [ASCIl|binary] ‘filename' <entity_list> [overwrite]
These commands provide the option of saving specific surfaces or volumes to the facet file. If no entities are provided in

the command, then all surfaces in the model will be exported to the file. The overwrite option forces a file to overwrite any
file of the same name in the current working directory.

Geometry Creation

There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT provides many geometry
primitives for creating common shapes (spheres, bricks, etc.) which can then be modified and combined to build complex
models. Secondly, geometry can be imported into CUBIT. Finally, geometry can be defined by building it from the "bottom
up", creating vertices, then curves from those vertices, etc. Two of these three methods for creating geometry in CUBIT
will be described in detail in this section.

(] Bottom-Up Geometry Creation
(] Geometric Primitives

119

CUBIT 11.0 User Documentation

Bottom-Up Geometry Creation

CUBIT supports the ability to create geometry from a collection of lower order entities. This is accomplished by first
creating vertices, connecting vertices with curves and connecting curves into surfaces. Currently bodies or volumes may
not be constructed by stitching a set of surfaces together, however surfaces may be swept or rotated to create bodies or
volumes. Existing geometry may be combined with new geometry to create higher order entities. For example, a new
surface can be created using a combination of new curves and curves already extant in the model. Commands and
details for creating each type of geometry entity are given below.

The following describes each of the basic entities that can be generated with CUBIT using the bottom-up approach

Creating Vertices
Creating Curves

Creating Surfaces
Creating Bodies

Creating Vertices

The basic commands available for creating new vertices directly in CUBIT are:

XYZ location

On Curve - Fraction
On Curve - General
From Vertex

At Arc

At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the vertex. It can also be created
lying on a curve or surface in the geometric model by specifying the curve or surface id; the position of the vertex will be
the point on the specified entity which is closest to the position specified on the command. With all of these commands,
the user is able to specify the color of the vertex.

Create Vertex <x><y><z> [on [Curve | Surface] <id>] [Color <color_name>]

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a curve using the second
form of the command.

Create Vertex on Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]
Vertex 3 in the following example was created with this command:

create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve

3. On Curve - General: A more general purpose form of the command is also available for creating vertices on curves:

120

CUBIT 11.0 User Documentation

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val 0.0 to 1.0> [From
Vertex <id> | Start|End] | Distance <val> [From {Vertex|Curve|Surface} <id> | Start|End] |
{{Close_To|At} Location {options} | Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema
[Direction] {options} [Direction {options}] [Direction {options}] | Segment <num_segs> |
Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance from one of the curves
ends, at the closest location to an xyz position or another vertex, or at a specified distance from a vertex, curve or surface.
You can also preview the location first with the command Draw Location On Curve (where the rest of the command is
identical to the Create Vertex form).

4. From Vertex: Create a vertex from an existing vertex.
Create Vertex from Vertex <id_list>[on {curve|surfce} <id>] [Color <color_name>]

If 'on curve|surface' option is used, the vertex is positioned on that curve or surface. When the 'on curve|surface' is not
used, the new vertex is positioned on the existing vertex.

5. At Arc: Another form simply creates vertices at arc or circle centers.
Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the bounded qualifier is used, the
vertices are limited to lie on the curves, otherwise the extensions of the curves are also used to calculate the
intersections. The near option is only valid for straight lines, where the closest point on each curve is created if they do not
actually intersect (resulting in two new vertices).

Create Vertex Atintersection Curve <id1> <id2> [bounded] [near] [Color <color_name>]

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the geometry (shape) of the
curve (along with any parameters necessary for that geometry). There are several forms of this command:

Straight

Parabolic, Circular, Ellipse
Spline

Copy

Arc Three

Arc Center Vertex

From Vertex Onto Curve
Offset

From Mesh Edges
Close_To

Surface Intersection
Projecting onto Surface

1. Straight: The first form of the command creates a straight line or a line lying on the specified surface. If a surface is
used, the curve will lie on that surface but will not be associated with the surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [On Surface <surface_id>]
Straight curves can be created using an axis. The syntax is as follows:
Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see the axis command
description.

Additionally, several connected straight curves can be created with a single command. The syntax for the polyline
command is as follows:

Create Curve Polyline Location {options} Location {options} ...

121

CUBIT 11.0 User Documentation

Notice that two or more locations are used to define a polyline. See Location, Direction, and Axis Specification for the
location command description.

2. Parabolic, Circular, Ellipse:The Parabolic option creates a parabolic arc which goes through the three vertices. The
Circular and Ellipse options create circular and elliptical curves respectively that go through the first and last vertices.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [Vertex] <vertex_id>
[Parabolic|Circular|Ellipse]

3. Spline: The spline form of the command creates a spline curve that goes through the all input vertices or locations. To
create a curve from a list of vertices use the syntax shown below. The delete option will remove all of the intermediate
vertices used to create the spline leaving only the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline will pass through all of the
specified locations. The syntax is shown below:

Create Curve Spline {List of locations}

See Location, Direction, and Axis Specification to view the location specification syntax.

4. Copy: This command actually copies the geometric definition in the specified curve to the newly created curve. The
new curve is free floating.

Create Curve from Curve <curve_id>

5. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3 curves. The Full qualifier
will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]
6. Arc Center Vertex: The next form of the command creates an arc using the center of the arc and 2 points on the arc.
The arc will always have a radius at a distance from the center to the first point, unless the Radius value is given. Again,

the Full qualifier will cause a complete circle to be created.

Create Curve Arc Center Vertex <center_id> <end1_id> <end2_id> [Radius <value>] [Full]
[Normal <x> <y> <z> **Needed when points colinear]

Note: Requires 3 Vertices - first is center, other two are on the arc
7. From Vertex Onto Curve: The following command will create a curve from a vertex onto a specified position along a
curve. If none of the optional parameters are given, the location on the curve is calculated as using the shortest distance
from the start vertex to the curve (i.e., the new curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction <f> | Distance <d> |

Position <xval><yval><zval> | Close_To Vertex <vertex_id> [[From] Vertex <vertex_id>

(optional for 'Fraction' & 'Distance’)]] [On Surface <surface_id>]
Note: Default = Normal to the Curve
8. Offset: The next command creates curves offset at a specified distance from a planar chain of curves. The direction
vector is only needed if a single straight curve is given. The offset curves are trimmed or extended so that no overlaps or
gaps exist between them. If the curves need to be extended the extension type can be Rounded like arcs, Extended
tangentially (the default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only
In all cases, the specified vertices are not used directly but rather their positions are used to create new vertices.

9. From Mesh Edges: This commands creates a curve from an existing mesh given a starting node and an adjacent
edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]

122

CUBIT 11.0 User Documentation

The adjacent edge indicates which direction to propagate the curve.
The curve will be composed of mesh edges up to the specified length.

If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1 shows a example of a curve
generated from the mesh.

Y\
[y

)
)

T
(]

L/)

TETRYA
.

L/
",
AL

Al
AV,
XX

T,

=
Wi
VA
\\,‘1'1 \
Ay
AVAVEVER')Y

Y}
.‘_,f

N
\A
\

W WL

AY
W
A

\X
\
V)

Figure 1. Example of curve created from mesh

The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve will also be meshed with

the edges it was propagated through. A related command for assigning mesh edges directly to a mesh block is the Rebar
command. See Element Block Specification for more details.

Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.

10. Close_To This option takes two geometric entities and creates the shortest possible curve between the two entities at
the location where the two entities are the closest. The two entities may NOT intersect. If two vertices are given, the
command will create a straight line between the two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>
{Vertex|Curve|Surface|Volume|Body} <id_2>

11. Surface Intersection The following command creates curves at surface intersections. Multiple curves can be created
from a single command.

123

CUBIT 11.0 User Documentation

Create Curve Intersecting Surface <id_list>

12. Projecting onto a Surface The project command allows you to make an imprint of a surface or set of curves onto
another surface. The command syntax is as follows:

Project {Curve|Surface} <id_list> onto Surface <surface_id> [Imprint [keepcurve] [keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is given, the result will be the
creation of a set of free curves on top of the projection surface. If a list of surfaces is given, the result will be the same as
selecting the curves that bound the surface (i.e. a group of free curves on the projecting surface).

The imprint option will imprint the resulting projected curves onto the projection surface. If this option is NOT given, the
new curves will lie coincident to the surface, but will not be part of the surface. Imprinting changes the topology of the
projection surface. Keepcurve option retains the new curves as both free curves, and curves in the projection surface. The
keepbody option retains the original body under the new imprinted body.

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT by fitting an analytic or
spline surface over a set of bounding curves. In this case, the curves must form a closed loop, and only one loop of
curves may be supplied. The second method, is by sweeping a curve about an axis, along a vector, or along another
curve. The result of these surface creation commands is a "sheet body" or a body that has zero measurable volume (it
does however have a volume entity). Booleans and special webcutting commands may be used with to decompose this
body or to use it for decomposing other bodies. Booleans can be used to cut holes out of these surfaces.

The following options may be used for creating a surface in CUBIT.

Bounding Curves
Bounding Vertices or Nodes
Copy

Extended Surface
Planar Surface

Net Surface

Offset

Skinning

Sweeping of Curves
Midsurface

Weld Profile
Meshed Entities

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit to cover the bounding
curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...
Another version of this command creates a surface from a set of bounding curves that all lie on one surface. If the curves
are selected they must lie on the surface, and they must create a closed loop. The On Surface option forces the surface
to match the geometry of the underlying surface exactly.

Create Surface Curve <id_list> On Surface <surface_id>
2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an analytic spline surface. The
On Surface option creates the surface from a set of nodes and vertices that all lie on one surface and restrains the
surface to match the geometry of the underlying surface. The project option will project the nodes or vertices to the
specified surface.

Create Surface [Node|Vertex| <id_list>[On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the specified surface. The new surface
will be a stand-alone sheet body that is geometrically identical to the user supplied surface.

Create Surface from Surface <surface_id>

124

CUBIT 11.0 User Documentation

4. Extended Surface: The fourth form of the command creates a surface that is extended from a given surface. The
specified surface's geometry is examined and extended out "infinitely" relative to the current model in CUBIT (i.e.
extended to just beyond the bounding box of the entire model). The given surfaces are extended as shown in the following
table.

Create Surface extended from Surface <surface_id>

Table 1. Surface Extension Results

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone, cylinder... Shell of outside conic axially aligned with given conic of infinite

height relative to model

Spline Surface is extended to extents of the spline definition. This may not
be any further than the surface itself, so caution should be used
here.

5. Planar Surface: The following commands create planar surfaces. The first passes a plane through 3 vertices, the
second uses an existing plane, the third creates a plane normal to one of the global axes, and the fourth creates a plane
normal to the tangent of a curve at a location along the curve. By default, the commands create the surface just large
enough to intersect the bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The plane can be previewed with the command Draw Plane [with]... (where
the rest of the command is the same as that to create the surface).

Create Planar Surface [with] Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id>
[intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Surface <surface_id> [intersecting] Body <id_range>]
[extended percentage|absolute <val>]

Create Planar Surface [with] Plane {xplane|yplane|zplane} [offset <val>] [intersecting] Body
<id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Normal To Curve <curve_id>{fraction <f> | distance <d> |
position <xval><yval><zval> | close_to vertex <vertex_id>} [[from] Vertex <vertex_id> (optional
for 'fraction' & 'distance')] [intersecting] Body <id_range>] [extended percentage|absolute
<val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes through a set of curves
in the u-direction and a set of curves in the v-direction (these u and v curves would looked like a mapped mesh). The first
form of the command uses curves to create the net surface. The curves must pass within tolerance of each other to work.
The second form uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a collection
of mapped or submapped surfaces that form a logical rectangle. By default net surfaces are healed to take advantage of
any possible internal simplification.

Create Surface Net U Curve <id_list>V Curve <id_list> [Tolerance <value>] [HEAL|noheal]
Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>] [HEAL|noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of complicated surfaces
then create a net surface from this mesh. Then the original surfaces can be removed with the noextend option and the
new net surface combined back onto the body.

7. Offset: The following command creates surfaces offset from existing surfaces at the specified distance. The surfaces
are not guaranteed to be extended or trimmed to share boundaries; however they are generally close.

125

CUBIT 11.0 User Documentation

Create Surface Offset [From] Surface <id_list> Distance <val>

8. Skinning: The following command creates a skin surface from a list of curves. An example of a skin surface is to
create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>
9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new surfaces. The path may be
specified as an axis and angle, a vector and distance, by indicating another curve or set of contiguous curves, or by
specifying a target plane. The following commands show the options available:

Sweep Curve <curve_id_range> { axis <xpoint ypoint zpoint xvector yvector zvector> |xaxis |

yaxis | zaxis } angle <degrees> [steps <Number_of_sweep_steps>] [draft_angle <degrees>]

[draft_type <integer>] [make_solid] [rigid]

Sweep Curve <curve_id_range> vector <xvector yvector zvector> [distance <distance>]
[draft_angle <degrees>] [draft_type <integer>] [rigid]

Sweep Curve <curve_id_range> along curve <refcurve_id_range> [draft_angle <degrees>]
[draft_type <integer>] [rigid]

Sweep Curve <curve_id_range> Target Plane <options>
In the first command, the steps options provides a way of faceting the sweep, so instead of a smooth round sweep, there
are facets to the surface. The make_solid option closes the newly-created surface to the axis, so that a solid is created

instead of a surface.

The last option sweeps a curve until it hits a target plane. The options for the target plane are described under Specifying
a Plane.

The other options are as follows:

draft_angle: determines how much drafting in of the surface is desired
draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they intersect)
1 =>rounded (create rounded corner between segments)
2 => natural (extends the shapes along their natural curve) ***

rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The rigid option disallows this
rotation.

10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the following command:
Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1> <idN2>
where N denotes the number of pairs of surfaces. An even number of surfaces must be specified, and the command will

group them by pairs in the order in which they are provided. The resulting surface will be trimmed by the specified body or
volume <id>. This replaces the Create Midplane command in previous versions of CUBIT.

126

CUBIT 11.0 User Documentation

Figure 1. Multisurface created with the Create Midsurface command

127

CUBIT 11.0 User Documentation

Figure 2. Midsurface created from 2 pairs of cylindrical surfaces

11. Weld Profile: Surfaces may be created by specifying a weld profile using the following command:
Create Surface Weld [Root] Location {options} Weld Surface <id_list> Length <val> [<val2>]
Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the root curve and uniting

the new body to the model. An example of the command is illustrated below. For a detailed description of the location
specifier see Location Direction, and Axis Specification.

create surface weld root location vertex 25 weld surface 13 14 length 2

128

CUBIT 11.0 User Documentation

Weld Surface

Foot Location
""."'IEI'TE}{ 25 Length 2

Figure 3. Weld Profile surface with length and root specifications

12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of meshed volumes,
surfaces, and/or from individual quadrilateral mesh elements. The individual option makes it so you can enter multiple
surfaces at once, and not have them merged together into a larger surface, but instead retain their own original
boundaries. The optional tolerance value allows the user to specify a tolerance to which the resulting surface should be fit.
The default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face <id_range> [Individual]}
[Tolerance <value>]

Figure 4. Acis Surface created from a Set of Quadrilaterals

Creating Bodies

Currently, CUBIT can create volumes:

from surfaces by sweeping a single surface into a 3D solid,
by offsetting an existing volume,

by sweeping a curve around an axis,

by stitching together surfaces that can form a closed volume,
by lofting from one surface to another surface, or

arwNE

129

CUBIT 11.0 User Documentation

6. by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed, and some non-planar faces
can be swept successfully, although not all are supported at this time. The following methods for generating volumes are
described:

Sweep Surface Along Vector
Sweep Surface About Axis
Sweep Surface Along Curve
Sweep Surface Perpendicular
Offset

Sweep Curve About Axis
Stitch Surfaces Together

Loft Surfaces Together
Thicken Surfaces

There are four forms of the sweep command; the syntax and details for each are given below. In each form, the optional
draft_angle parameter specifies the angle at which the lateral faces of the swept solid will be inclined to the sweep
direction. It can also be described as the angle at which the profile expands or contracts as it is swept. The default value
is 0.0. The optional draft_type parameter is an ACIS-related parameter and specifies what should be done to the corners
of the swept solid when a non-zero draft angle is specified. A value of 0 is the default value and implies an extended
treatment of the corners. A value of 1 is also valid and implies a rounded (blended) treatment of the corners.

The sweep operations have been designed to produce valid solids of positive volume, even though the underlying solid
modeling kernel library that actually executes the operation, ACIS, allows the generation of solids of negative volume (i.e.,
voids) using a sweep.

1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector. Specifying the distance
of the sweep is optional; if this parameter is not provided, the face is swept a distance equal to the length of the specified
vector.

Sweep surface {<surface_id_range> | all} vector <x_vector y_vector z_vector> [distance
<distance_value>] [draft_angle <degrees>] [draft_type <0 | 1>]

2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a specified angle. The axis of
revolution is specified using either a starting point and a vector, or by a coordinate axis. This axis must lie in the plane of
the surfaces being swept. The steps parameter defaults to a value of 0 which creates a circular sweep path. If a positive,
non-zero value (say, n) is specified, then the sweep path consists of a series of n linear segments, each subtending an
angle of [(sweep_angle) / (steps-1)] at the axis of revolution.

Sweep surface {<surface_id_range> | all} axis {<xpoint ypoint zpoint xvector yvector zvector>

| xaxis | yaxis | zaxis} angle <degrees> [steps <number_of_sweep_steps>] [draft_angle
<degrees>] [draft_type <0 | 1>]

i Specifying multiple surfaces that belong to the same body will not work as expected, as ACIS performs the
sweep operation in place. Hence, if a range of surfaces is provided, they ought to each belong to different bodies.

3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [draft_angle <degrees>]
[draft_type <0 | 1] 2>]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be tangential to the surface. Sweep
along curve also supports an additional draft type "2" which implies a "natural" extension of the corners from their curves.

4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface perpendicular to the surface:

Sweep Surface <surface_id_range> Perpendicular Distance <distance> [switchside]
[draft_angle <degrees>] [draft_type <integer>]

The sweeping plane must be planar in order to determine the sweep direction. The switchside option will reverse the
direction of the sweep.

130

CUBIT 11.0 User Documentation

5. Offset: The following command creates a body offset from another body at the specified distance. The new surfaces
are extended or trimmed appropriately. A positive distance results in a larger body; a negative distance in a smaller body.

Create Body Offset [from] Body <id_range> Distance <value>

This option is also available for limited cases for facet-based surfaces.

6.Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a specified angle. The axis is
specified the same as in the Sweep Surface About Axis command. The steps, draft_angle, and draft_type options are the
same as are described above. To create the solid, the make_solid option must be specified, otherwise a surface will be
created, rather than a solid. If the rigid option is specified, then the curve or set of curves will remain oriented as originally
oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |
yaxis | zaxis } angle <degrees> [steps <Number_of_sweep_steps>] [draft_angle <degrees>]
[draft_type <integer>] [make_solid] [rigid]

7. Stitch Surfaces Together: A body can be created from various surfaces that form a closed volume with command
below. The geometry must be ACIS-type geometry (ie. can be imported from IGES, STEP or fastq files) This option is also
available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|noheal] [keep] [sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this behavior. The keep option
preserves the original surfaces.

All of the surfaces must form a closed water-tight volume for this command to succeed unless the sheet option is
specified. The sheet option allows for the creation of an open body.

8. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a new body. Surfaces from solid bodies
and sheet bodies may be used to create a loft body. In order to create the loft body, two surfaces coincident to the input
surfaces are created. The loft body is extruded along the shortest path between the corresponding vertices that define the
shapes of the two copied surfaces. This new body is solid. The surfaces used to create the loft body are unchanged.

Create {Body|Volume} Loft Surface <surfl> <surf2> [Takeoffl <value>] [Takeoff2 <value>]
[arc_length {true|FALSE}] [twist {TRUE|false}] [align_direction {TRUE|false}] [perpendicular
{TRUE|false}] [simplify {true|FALSE}]

It is recommended that lofting only be attempted between similar surfaces. For example, lofting from a trapezoidal surface
(whose shape is defined by four end vertices) to a triangular surface (whose shape is defined by three end vertices) will
force the lofting function to transform the cross-section of the loft body in mid-extrusion, often with poor results (e.g., a
skewed or self-intersecting loft body). Attempting to loft between nearly perpendicular surfaces generally produces poor
results as well.

Lofting can be used to split a body in order to create a more structured mesh. Figure 1 below shows a single volume
swept from a large paved surface. Figure 2 shows this same volume after surfaces defined on the source and target
surfaces have been used to create a loft body. This original body was chopped with the loft body. The resulting two bodies
were merged. The yellow volume was swept as the volume in Figure 1 was but the purple volume was submapped,
producing a much more structured mesh overall.

131

CUBIT 11.0 User Documentation

Figure 1. Mesh before loft. Single swept volume with a large paved face.

Figure 2. Mesh after loft. The yellow volume is paved and the purple volume is submapped.
9. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface can be thickened in both
directions using the "both" keyword, thickened in the direction of surface normal using a positive depth, or thickened in the
opposite direction using a negative depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

132

CUBIT 11.0 User Documentation

Geometric Primitives

The geometric primitives supported within CUBIT are pre-defined templates of three-dimensional geometric shapes.
Users can create specific instances of these shapes by providing values to the parameters associated with the chosen
primitive. Primitives available in CUBIT include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Each
primitive, along with the command used to generate it and the parameters associated with it, are described next. For
some primitives, several options can be used to generate them, and are described as well.

The following Primitives can be generated with CUBIT:

Brick

Cylinder

Prism

Frustrum

Pyramid

133

CUBIT 11.0 User Documentation

Sphere

Torus

General Notes

Primitives are created and given an ID equal to one plus the current highest body ID in the model.
Primitive solids are created with their centroid at the origin or the world coordinate system.

e For primitives with a Height or Z parameter, the axis going through these primitives will be aligned with the Z
axis.

e For primitives with a Major Radius and a Minor Radius, the Major Radius will be along the X axis, the Minor
Radius along the Y axis.

e For primitives with a Top Radius, this radius will be that along the X axis; the Y axis radius will be computed
using the Major, Minor and Top Radii given.

Creating Bricks

The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z} <height>] [Bounding Box
entity_type <id_range>] [Tight] [[Extended] {Percentage| Absolute} <val>]]

Notes

A cubical brick is created by specifying only the width or x dimension.
A brick can be specified to occupy the bounding box of one or more entities, specified on the command line.

If the Tight option is specified with Bounding Box, the result is the smallest brick that can contain the entities
specified, which is the default behavior of the Bounding Box option.

e |fthe Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

e |f abounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.

134

CUBIT 11.0 User Documentation

Command

[Create] Cylinder [height | z] <val> Radius <val>

[Create] Cylinder [height | z] <val> Major Radius <val> Minor Radius <val>
Notes

e Acylinder may also be created using the frustum command with all radii set to the same value.
e Specifying major and minor radii can produce a cylinder with an oval cross section.

Creating Prisms

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.
Command

[Create] Prism [height | z] <z-val> sides <nsides> radius <radius>
Notes

The radius defines the circumradius of the n-sided polygon on the end caps.

If a major and minor radius are used, the end caps are bounded by a circum-ellipse instead of a circumcircle.

The number of sides of a prism must be greater than or equal to three. A prism may also be created using the
pyramid command with all radii set to the same value.

e [fthe Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

e [f abounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

Creating Frustrums

A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right elliptical cone.
Command
[Create] Frustum [height | z] <z-height> Radius <x-radius> [Top <top_radius>]

[Create] Frustum [height | z] <z-height> Major Radius <radius> Minor Radius <radius> [Top
<top_radius>]

Notes

e |f used, Major Radius defines the x-radius and Minor Radius the y-radius.

e |f used, Top Radius defines the x-radius at the top of the frustum; the top y radius is calculated based on the
ratio of the major and minor radii.

Creating Pyramids

A pyramid is a general n-sided prism.
Command

[create] pyramid [height | z] <z-height> sides <nsides> Radius <radius>

135

CUBIT 11.0 User Documentation

[create] pyramid [height | z] <z-height> sides <nsides> [major [radius] <x-radius> minor
[radius] <y-radius>] [top <top-x-radius>]

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an annular sphere.

Command

[Create] sphere radius <radius> [xpositive] [ypositive] [zpositive] [delete] [inner [radius]
<radius>]

Notes

e |f Xpositive, Ypositive, and/or Zpositive are used, a sphere which occupies that side of the coordinate plane only
is generated, or, if the delete keyword is used, the sphere will occupy the other side of the coordinate plane(s)
specified. These options are used to generate hemisphere, quarter sphere or a sphere octant (eighth sphere).

e |fthe inner radius is specified, a hollow sphere will be created with a void whose radius is the specified inner
radius.

Creating Toruses

The torus command generates a simple torus

Command

[create] torus major [radius] <major-radius> minor [radius] <minor-radius>

Notes

e Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius of the spine of the
torus.

e The minor radius must be less than the major radius.

Geometry Transforms

Align
Copy
Move
Scale
Rotate
Reflect

Bodies can be modified in CUBIT using transform operations, which include align, copy, move, reflect, restore, rotate, and
scale. With the exception of the copy operation, transform operations in CUBIT do not create new topology, rather they
modify the geometry of the specified bodies. ACIS, Mesh Based Geometry and Virtual Geometry representations may be
transformed. If the geometric entity has been meshed, the nodes of the mesh will be transformed along with the geometry.
To transform the nodes of a mesh as they are written to the Exodus Il mesh file without modifying their location within
CUBIT, see Transforming Mesh Coordinates.

136

CUBIT 11.0 User Documentation

Align Command

The align command is a combination of the rotate and move commands. The align command will align the surface of a
given volume with any other surface in the model, such that the surface centroids are coincident and the normals are
pointing either in the same or opposite direction (depending on their initial alignment). The align command can also align a
face of a volume with the xy, yz, and xz planes and the vertices of a volume with the x, y, and z axes.
The syntax of the command to align commands are:

Align Volume <id> Surface <surface_id> with Surface <surface_id>

Align Volume <id> {Surface <surface_id>| Vertex <vertex_id>} {{x|y|z axis}|{xy|xz|yz plane}}

This transformation is useful for aligning surfaces in preparation for geometry decomposition and aligning models for axis-
symmetric analysis.

Copy Command

The copy command copies an existing entity to a new entity without modifying the existing entity. A copy can be made of
seve'ral enti_tigs at once, and the resulting new entities can be translated or rotated at the same time. The commands for
copying entities are:
{Body|Volume|Surface|Curve} <range> Copy [move {x|y|z} <distance>] [nomesh]
{Body|Volume|Surface|Curve} <range> Copy [move <direction> [distance]] [nomesh]
{Body|Volume|Surface|Curve} <range> Copy [Reflect {x|y|z}] [nomesh]
{Body|Volume|Surface|Curve} <range> Copy [Reflect <x> <y> <z>] [nomesh]
{Body|Volume|Surface|Curve} <range> Copy [Rotate <angle> About {x|y|z}] [nomesh]
{Body|Volume|Surface|Curve} <id_range> Copy [Rotate <angle> About <x> <y> <z>] [nomesh]

{Body|Volume|Surface|Curve} <range> Copy [Scale <scale> | x <val>y <val> z <val>] [nomesh]

If the copy command is used to generate new entities, a copy of the original mesh generated in the original entity will also
be copied directly onto the new entity unless the nomesh option is used.

This is currently limited to copies that do not interact with adjacent geometry through non-manifold topology. For details on
mesh copies, see the Mesh Duplication documentation.

Move Command

The move command moves a body, volume, free surface or free curve by a specified offset. The command syntax is:
{Body|Volume|Surface|Curve} <id_range> [Copy [nomesh]] Move <dx> <dy> <dz>
{Body|Volume|Surface|Curve} <id_range> [Copy [nomesh]] Move {x|y|z} <distance>

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis directions. If the copy option is

specified, a copy is made and the copy is moved by the specified offset. The nomesh option will copy and move only the

geometry.

These forms of the Move command will only work on free surfaces and free curves. To move a curve or surface that is
part of a higher-order entity, the Move {entity} ... command is used.

Moving Other Geometric Entities

It is also possible to move bodies by specifying one of its child entities. For example, a body can by moved by specifying
one of its curves. However, if a lower-order entity is moved, the parent body and all related entities will also be moved.
The commands for moving bodies using a child entity are given below. Alternatively, the tweak command can be used to
move curves and surfaces without moving the parent body.

137

CUBIT 11.0 User Documentation

Move {vertex|curve|surface|volume|body} <id_range> [Midpoint] Location <x> [<y> [<z>]]

Move {vertex|curve|surface|volume|body} <id_range> location [Midpoint] [x <val>] [y <val>] [z
<val>] [except [X] [y] [z]]

Move {vertex|curve|surface|volume|body} <id_range> Normal to Surface <id> Distance <val>
The first form of the command will move the entity to an absolute location. The second form will move the entity by a
relative distance in any of the xyz axis directions. "Except" is used to preserve the x, y, or z plane in which the center of

the entity lies. The third form of the command will move the body along an axis defined by the outward-facing surface
normal of another surface.

Moving Bodies Relative to Other Geometric Entities

It is also possible to move bodies relative to other geometric entities in the model. The following command takes as
arguments two geometric entities. The first entity is the one to move. The second entity is where it will be moved. In both
cases, the midpoints of the specified entity are used to determine the distance and direction of the move. "Except" is used
to preserve the x, y, or z plane in which the center of the entity lies.

Move {vertex|curve|surface|volume|body} <id_range> [Midpoint] location
{vertex|curve|surface|volume|body} <id> [Midpoint] [except [x] [y] [z]]

Moving Merged Entities

The only way that merged entities can be moved is by including each of the merged bodies in the entity list. The following
form of the command should be used to move merged entities.

Body <id_list> Move . . . options

All merged entities must be explicitly specified. Any of the move options described above can be used with merged
entities.

Move Undo

The Undo option allows a user to reverse the most recent move. This command will only work for the Move {entity}
commands, and not the {Entity} Move commands. The syntax is:

Move Undo

Scale Command

The scale commands resizes an entity (body, volume, surface, or curve) by a scaling factor. The scaling factor may be a
constant, or may differ in the X, y, and z directions. The entity chosen will be scaled about the origin, and any mesh on the
object will be scaled too, unless the nomesh keyword is used. If the entity chosen belongs to a higher-order entity, then
the higher-order entity will be scaled. For example, if you choose to scale a surface that belongs to a body, the body will
also be scaled.

The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> [Copy [nomesh]] Scale {<scale> | x <val>y <val> z
<val>}

If the copy option is specified, a copy of the entity is made and scaled the specified amount.

Rotate Command

The rotate command rotates a body about a given axis without adding any new geometry. If the Angle or any Components
are not specified they are defaulted to be zero. The commands to rotate a body or bodies are:

Body <range> [copy] rotate <angle> about {x | y | z}

Body <range> [copy] rotate <angle> about <x-comp> <y-comp> <z-comp>

138

CUBIT 11.0 User Documentation

Rotate {body|volume|surface|curve|vertex|group} <id_range> about {x|y|z|<xval> <yval>
<zval>} angle <val>

Rotate {body|volume|surface|curve|vertex|group} <id_range> about vertex <id> vertex <id>
angle <val>

Rotate {body|volume|surface|curve|vertex|group} <id_range> about normal of surface <id>
angle <val>

If the copy option is specified, a copy is made and rotated the specified amount.

Reflect Command

The reflect command mirrors the body about a plane normal to the vector supplied. The reflect command will destroy the
existing body and replace it with the new reflected body, unless the copy option is used.

Body <range> [copy] reflect <x-comp> <y-comp> <z-comp>

Body <range> [copy] reflect {x | y | z}
Geometry Booleans

e Intersect
Subtract
Unite

CUBIT supports boolean operations of intersect, subtract, and unite for bodies.

An automatic function associated with webcutting operations is regularizing geometry which can be turned off or back on
with the following command:

set boolean regularize [ON | off]

Intersect

The intersect command generates a new body composed of the space that is shared by the two bodies being intersected.
Both of the original bodies will be deleted and the new body will be given the next highest body ID available. The
command is:

Intersect {Volume|[Body]} <range> [With {Volume|[Body]} <range>] [Keep]

The keep option results in the original bodies used in the intersect being kept.

Subtract

The subtract operation subtracts one body or set of bodies from another body or set of bodies. The order of subtraction is
significant - the body or bodies specified before the From keyword is/are subtracted from bodies specified after From.
The new body retains the original body's id. If any additional bodies are created, they will be given the next highest
available ids. The keep option simply retains all of the original bodies. The command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range> [Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

Unite

The unite operation combines two or more bodies into a single body. The original bodies are deleted and the new body is
given the next highest body ID available, unless the keep option is used. The commands are:

139

CUBIT 11.0 User Documentation

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [keep]
Unite Body {<range> | all} [keep]

The second form of the command unites multiple bodies in a single operation. If the all option is used, all bodies in the
model are united into a single body. If the bodies that are united do not overlap or touch, the two bodies are combined into
a single body with multiple volumes.

Geometry Cleanup and Defeaturing

Frequently, models imported from various CAD platforms either provide too much detail for mesh generation and analysis,
or the geometric representation is deficient. These deficiencies can often be overcome with small changes to the model.
Several tools are provided in CUBIT for this purpose.

The following describes the features available in CUBIT for clean up and defeaturing

Healing

Tweaking Geometry
Removing Geometric Features

Reqularizing Geometry

Finding Surface Overlap
Validating Geometry

Debugging Geometry
Geometry Accuracy

Trimming and Extending Curves
Automatic Geometry Clean-up

Healing

Healing is an optional module that detects and fixes ACIS models.

It is possible to create ACIS models that are not accurate enough for ACIS to process. This most often happens when
geometry is created in some other modeling system and translated into an ACIS model. Such models may be imprecise
due to the inherent numerical limitations of their parent systems, or due to limitations of data transfer through neutral file
formats. This imprecision can also result when an ACIS model is created at a different tolerance from the current
tolerance settings. This imprecision leads to problems such as geometric errors in entities, gaps between entities, and the
absence of connectivity information (topology). Since ACIS is a high precision modeler, it expects all entities to satisfy
stringent data integrity checks for the proper functioning of its algorithms. Therefore, if such imprecise models must be
processed by an ACIS based system, "healing" of such models is necessary to establish the desired precision and
accuracy.

The following sections describe how to use the Healing capability in ACIS and CUBIT to analyze and heal defective ACIS
geometry.

Analyzing Geometry
Healing Attributes
Auto Healing

Spline Removal
What if Healing is Unsuccessful?

Analyzing Geometry

The following command analyzes the ACIS geometry and will indicate problems detected:
Healer Analyze Body <id_range> [logdfile ['filename'] [display]]

The logfile option writes the analysis results to the filename specified, or to 'healanalysis.log' by default. In the GUI
version of CUBIT, the display option will write the results in a dialog window.

140

CUBIT 11.0 User Documentation

The outputs include an estimate of the percentage of good geometry in each body. The optional logfile will include
detailed information about the geometry analysis. By default CUBIT will also highlight the bad geometry in the graphics
and give a printed summary indicating which entities are "bad". Sample output from this command is shown below:
Percentage good geometry in Body 9: 98%

HEALER ANALYSI S SUMVARY:

Anal yzed 1 Body: 9

Found 2 bad Vertices: 51, 52

Found 3 bad Curves: 76, 77, 80

Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problens: 9

Jour nal ed Command: heal er anal yze body 9

Note that it is not necessary to analyze the geometry before healing; however, it can be useful to analyze first rather than
healing unnecessarily. Also note that healer analysis can take a bit of time, depending on the complexity of the geometry
and how bad the geometry is.

The validate geometry commands work independently of the healer and give more detailed information.

Healer Settings

You can control the outputs from the healer with the following commands:
Healer Set OnShow {highlight|draw|none}
Healer Set OnShow {badvertices|badcurves|badcoedges|badbodies|all} {On|Off}
Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can control which entity types to
display, as well as whether or not to show the printed summary at the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad geometry again with the
"show" command. This command simply uses cached data (healing attributes - see the next section) from the previous
analysis.

Healer Show Body <id_list>

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows you to use the "show"
command to quickly display the bad geometry again. The results attributes are automatically removed when the geometry
is exported or any boolean operations are performed. They can also be explicitly removed with the command

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the "CleanAtt" setting (this can
save a little memory):

Healer Set CleanAtt {On|Off}

Auto Healing

Healing is an extremely complex process. The general steps to healing are:

Preprocess - trim overhanging surfaces and clean topology (remove small curves and surfaces).
Simplify - converts splines to analytic representations, if possible.

Stitch - geometry cleanup and stitching loose surfaces together to form bodies.

Geometry Build - repairing and building geometry to correct gaps in the model.

141

CUBIT 11.0 User Documentation

® Post-Process - calculating pcurves and further repairing bad geometry.

e Make Tolerant Curves & Vertices - a last optional step that allows special handling of unhealed entities for
booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:

Healer Autoheal Body <id_range> [rebuild] [keep] [maketolerant] [logfile ['logfilename']
[display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the surfaces back together and heals
again. In some cases this can more effectively fix up the body, although it is much more computationally intensive and is
not recommended unless normal healing is unsuccessful.

The keep option will retain the original body, putting the resulting healed body in a new body.

The maketolerant option will make the edges tolerant if ACIS is unable to heal them. This can result in successful
booleans even if the body cannot be fully healed - ACIS can then sometimes "tolerate" the bad geometry. Note that the
healer analyze command will still show these curves as "bad", even though they are tolerant. The validate geometry
commands however take this into consideration.

The output from the autoheal command can be written to a file using the logfile option; the default file name is
autoheal.log. The display option works as before, displaying the results in a window in the GUI version of CUBIT.

Spline Removal

If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance can be modified and healing re-
run:

Healer Default Simplifytol .1
Healer Autoheal Body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):
Healer Force {plane | cylinder | cone | sphere | torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic surfaces. Note: Spline curves
can be found using entity filters:

Execute Filter Curve Geometry_type Spline

What if Healing is Unsuccessful?

The ACIS healing module is under continued development and is improving with every release. However, there will often
be situations where healing is unable to fully correct the geometry. This might be okay, as meshing is rarely affected by
the small inaccuracies healing addresses. However, boolean operations on the geometry can fail if the bad geometry
must be processed by the operation (i.e., a webcut must cut through a bad curve or vertex).

Here are some possible methods to fix this bad geometry:

Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy. Re-export the geometry.
Heal again using the rebuild option.
Heal again using the make tolerant option.

Remove the offending surface from the body (using the remove surface command), then construct new
surfaces from existing curves and combine the body back together.

e Composite the surfaces over the bad area, mesh and create a net surface from the composite, remove the bad
surfaces and combine.

e Export the geometry as IGES, import the IGES file into a new model and look for double surfaces or surfaces
that show up at odd angles using the find overlap commands. Delete and recreate surfaces as needed and
combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing bad geometry.

142

CUBIT 11.0 User Documentation

Regularizing Geometry

The regularize command removes unnecessary topology, which in effect reverses the imprint operation. This can help
clean up the model from extra features that are unnecessary for the geometric definition of the model. The following
command regularizes the model:

Regularize Body|Group|Surface|Curve|Vertex <range>
If you are frequently using web-cutting or other boolean operations to decompose your geometry, it may be convenient to

always generate regularized geometry. To set creation of regularized geometry during boolean operations use the
following command:

set boolean regularize [ON | off]

Finding Surface Overlap

The surface overlap capability finds surfaces that overlap each other, with the capability to specify a distance and angle
range between them. This is useful for debugging geometry imprinting and merging problems, as well as for finding gaps
in large assembly models. Finding overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume}<id_list>

]If a list of entities is not specified, all bodies in the model are checked. By default the command does not check the
surfaces within a given body against each other; rather, it only checks surfaces between bodies. This can be overridden
by inputting a surface list (i.e. find overlap surface all), or with a setting (see below).

Facetted Representation

This command works entirely off of the facetted surface representation of the model (the facetted representation is what
you see in a shaded view in the graphics). There are inherent advantages and disadvantages with this method. The
biggest advantage is avoidance of closest-point calculations with NURBS based geometry, which tends to be slow. This
method also eliminates possible problems with unhealed ACIS geometry. The disadvantage is working with a less
accurate (i.e., facetted) representation of the geometry. To circumvent problems with this facetted geometry, various
settings can be used to control the algorithm. For example, you might consider using a more accurate facetted
representation of the model - see below.

Find Overlap Settings

Various settings are used to control the precision and handling of overlaps during the find overlap process. A listing of the
settings that find overlap uses is printed using the command:

Find [Surface] Overlap Settings
These settings, and the commands used to control them, are described below.
Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between normals of adjacent surface
facets. The default angular tolerance is 15° - consider using a value of 5° . This will generate a more accurate facetted
representation of the geometry for overlap detection. This can be particularly useful if the overlap command is not finding
surface pairs as you would expect, particularly in "curvy" regions. Note however that the algorithm will run slower with
more facets. The distance tolerance means the maximum actual distance between the generated facets and the surface.
This value is by default ignored by the facetter - consider specifying a reasonable value here for more accurate results.
set Overlap [Facet] {Angle|Absolute} <value>
Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a distance from the minimum to
maximum specified. The default range is 0 to 0.01. Testing has shown this to be about right when searching for coincident
surfaces. Gaps can be found by using a range such as 3.95 to 5.05.

set Overlap {Minimum|Maximum} Gap <value>

143

CUBIT 11.0 User Documentation

Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this angle range of each other. The
default range is 0.0 to 5.0 degrees. Testing has shown that this range works well for most models. It is usually necessary
to have a range up to 5.0 degrees even if you are looking for coincident surfaces because of the different types of faceting
that can occur on curvy type surfaces. For example, for the case of a shaft in a hole, the facets of the shaft usually won't
be coincident with the facets of the hole, but may be offset by a certain distance circumferentially with each other. The 5
degree max angle range will account for this. If you find that the algorithm is not finding coincident surfaces when it
should, you can increase the upper range of this value. Note that this parameter is useful also for finding plates coming
together at an angle.

set Overlap {Minimum|Maximum} Angle <value>
Normal - this setting determines whether to search for surfaces whose normals point in the same direction as each other
(same), away from each other (opposite) or either (any). The default is ANY, but it may be useful to limit this search to
opposite, as this would be the usual case for most finds.

set Overlap Normal {ANY|opposite|same}
Tolerance - two individual facets must overlap by more than this area for a match to be found. Consider the two
cylindrical curves at the interface of the shaft and the block in Figure 1. Note that some of the facets actually overlap, even
though the curves will analytically be coincident. You can filter out false matches by increasing the overlap tolerance

area. The default value for this setting is 0.001.

set Overlap Tolerance <value>

—— Facet

Block N
- \\{r’f Overlap

/ \
ﬁj Shaft

Figure 1. Possible false find due to overlap (tolerance will prevent finding match)

Group - the surface pairs found can optionally be placed into a group. The name of the group defaults to
"overlap_surfaces".

set Overlap Group {on|OFF}
List - by default the command lists out each overlapping pair - this can be turned off using the command:
set Overlap List {ON]off}

Display - by default the command clears the graphics and displays each overlapping pair - this can be turned off using
the command:

set Overlap Display {ON|off}

Body - by default the command will not search for overlapping pairs within bodies - only between different bodies. Turn
this setting on to search for pairs within bodies. Note however that this will slow the algorithm down.

set Overlap Body {on|OFF}
Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will often force imprints that just
imprinting bodies together will miss. For each pair of overlapping surfaces, the containing body of one surface is imprinted

with the individual curves of the other surface, until the resulting surfaces no longer overlap.

set Imprint {on|OFF}

Validating Geometry

Detailed checks of geometry and topology can be performed using the validate command:

144

CUBIT 11.0 User Documentation

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>
Validate {Volume|Surface|Curve|Vertex} <range> mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements to determine the validity of the
mesh.

More rigorous checking can be accomplished with the validate geometry commands by specifying a higher check level.
Use the following command to accomplish this:

set AcisOption Integer 'check_level' <integer>
where integer is one of the following:
10 = Fast error checks
20 = Level 10 checks plus slower error checks (default)
30 = Level 20 checks plus D-Cubed curve and surface checks
40 = Level 30 checks plus fast warning checks
50 = Level 40 checks plus slower warning checks
60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks
You can also get more detailed output from the validate command with (the default is off):
set AcisOption Integer 'check_output' on
Note that some of the ids listed in the output of the validate command are currently meaningless, e.g. those for coedges.

The validate command can also check for consistent surface normals and return a list of offending surfaces. The syntax
for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>] [Reverse]

Using the "reference" keyword, a reference surface is compared to the normal consistency of all other specified surfaces.
Inconsistent surfaces can be reversed using the "reverse" keyword.

Debugging Geometry

The following command checks for inconsistencies in the CUBIT topological model, by checking the specified entities and
all child topology and/or comparing to solid model topology:

Geomdebug Validate [compare] <entity_list>

This command checks for:

Consistent CoFace senses

Loops are closed/complete

Consistent CoEdge senses

Correct vertex order on curves w.r.t. parameterization
Correct tangent direction of curves w.r.t. parameterization

Related Commands:
Geomdebug Vertex <vertex_id>
Geomdebug Curve <curve_id>

Geomdebug Surface <surface_id>

145

CUBIT 11.0 User Documentation

Geomdebug body <body_id>

Geomdebug Containment {Curve | Surface} <id>{Location (options) | Node <id_list>}
The following command prints info about GeometryEntities owned by specified entity:

Geomdebug Geometry <entity_list> [interval <n>] [index <n>] [TEXT] [GRAPHIC] [attributes]
The following command lists (TopologyBridge) topology for specified entity:

Geomdebug solidmodel <entitiy_list> [index <n>]
The following command lists GroupingEntities.

Geomdebug GPE <entity_list>

Geometry Accuracy

The accuracy setting of the ACIS solid model geometry can be controlled using the following command:
[set] Geometry Accuracy <value = 1e-6>

Some operations like imprinting can be more successful with a lower accuracy setting (i.e., 0.1 to 1e-5). However, it is not
recommended to change this value. Be sure to set it back to 1e-6 before exporting the model or doing other
operations as a higher setting can corrupt your geometry.

Tweaking Geometry

Tweaking Vertices
Tweaking Curves
Tweaking Surfaces
Tweak Remove Topology

The tweaking commands modify models by moving, offsetting or replacing surfaces or curves, while extending the
adjoining surfaces to fill the resulting gaps. This is useful for eliminating gaps between components, simplifying geometry
or changing the dimensions of an object.

Tweaking Vertices

The Tweak Vertex command can be used to do the following:

(] Tweaking a Vertex With a Chamfer
e Tweaking a Vertex With a Non-Equal Chamfer
e Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer

Tweak Vertex <id_range> Chamfer Radius <value>

This form of the command creates a chamfered corner at the specified vertex. Can be use on volumes or free surfaces.
The 'keep' option creates another volume on which the tweak is applied; the original volume remains unmodified.

146

CUBIT 11.0 User Documentation

Figure 1. Tweak Vertex Chamfer

Tweaking a Vertex With a Non-Equal Chamfer

Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius <value> Curve <id>
Radius <value> Curve <id>] [keep]

This next form of the command creates a non-equal chamfered corner at the specified vertex. Can only be used on
vertices of volumes. The 'keep' option creates another volume on which the tweak is applied; the original volume remains
unmodified.

Tweaking a Vertex With a Fillet Radius

Tweak Vertex <id_range> Fillet Radius <value> [keep]

This command replaces a vertex with a filleted radius. The command can only be used on free surfaces. The 'keep' option
creates another volume on which the tweak is applied; the original free surface remains unmodified.

147

CUBIT 11.0 User Documentation

Figure 2. Tweak Vertex Fillet

Tweaking Curves

The following options of the Tweak Curve command are available. Command syntax and description follow below.

Create a Chamfer or Fillet

Tweaking a Curve Using an Offset Distance

Removing a Curve

Tweaking a Curve Using a Target Surface, Curve, or Plane
Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet

The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The radius value is the radius of the fillet
arc or chamfer cut distance. The command syntax is:

Tweak Curve <id_range> {Blend|Chamfer} Radius <value>
In addition to creating chamfers of a single cut distance, the chamfer can be specified be two values. The syntax is:
Tweak Curve <id_list> Chamfer Radius <vall> [val2] [keep] [preview]

Figure 1 shows a brick (‘br x 10") chamfered with two different cut distances (‘Tweak Curve 1 2 Chamfer Radius 2 4').

148

CUBIT 11.0 User Documentation

Figure 1 Chamfer with two different distances
Individual curves can also be filleted with different start and finish radius values. The syntax is:
Tweak Curve <id> Fillet Radius <vall> [val2] [keep] [preview]

Figure 2 shows a brick (‘br x 10") filleted with different start and end radius values (‘Tweak Curve 1 2 Chamfer Radius 2
4).

Figure 2. Fillet with two different radii

For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the destruction of the original geometry after
the operation and the preview option temporarily displays the new geometry configuration without actually changing the
geometry.

Tweaking a Curve Using an Offset Distance

Tweak Curve <id_list> Offset <val> [keep] [preview]

Tweaking curves a specified distance offsets the existing curves and extends the attached surfaces to meet them. A
positive offset value will enlarge the surface while a negative value will decrease the area of the attached surface. The
keep option prevents the destruction of the original geometry after the operation. The preview option temporarily displays
the new geometry configuration without actually changing the geometry. Figure 3 shows an example of offsetting a curve
a specified distance.

149

CUBIT 11.0 User Documentation

I> l

Figure 3 Offsetting a set of curves a specified distance

Removing a Curve
Tweak Curve <id_list> Remove [keep] [preview]

Similar to the Tweak Curve Remove command, the tweak curve remove function removes a specified curve from a sheet
body. Figure 4 shows a simple example of removing a curve from a sheet body.

l:.I

Figure 4. Removing a curve from a sheet body

The keep option prevents the destruction of the original geometry after the operation. The preview option temporarily
displays the new geometry configuration without actually changing the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure 5 shows an example of tweaking
a curve to several surfaces.

150

CUBIT 11.0 User Documentation

Figure 5 Tweaking a curve to multiple target surfaces

._

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak Curve syntax is:

Tweak Curve <id_list> Target [{Surface <id_list>[EXTEND|noextend] | Plane (options)} [keep]
[preview]

It should be noted that if the source and target surfaces are from the same body the resulting geometry will be
automatically stitched. Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid target, so the option is given to
tweak to unextended targets with the noextend option. In this case, the tweaked body must fully intersect the existing
targets for success. If you experience a failure when tweaking to multiple targets or the results are unexpected, it is
recommended to try the noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS geometry
engine). It is recommended to always preview before using the tweak target commands.

Although it may not be intuitive curves can also serve as the target geometry. Figure 6 shows an example of extending a
curve to another curve.

151

CUBIT 11.0 User Documentation

Figure 6 Tweaking a curve to a target curve

Notice that the source curve actually extends to the target curve as if the target were a surface. The syntax for extending
curves to target curves is:

Tweak Curve <id_list> Target Curve <id_list > [EXTEND|noextend] [keep] [preview]
Single target curves are automatically extended so that the tweaked body will fully intersect the target. Unfortunately,
extending multiple target curves can sometimes result in an invalid target, so the option is given to tweak to unextended
targets with the noextend option. In this case, the tweaked body must fully intersect the existing targets for success. If
you experience a failure when tweaking to multiple targets or the results are unexpected, it is recommended to try the
"noextend" option (NOTE: Tweaking to multiple targets is only implemented in the ACIS geometry engine). It is
recommended to always preview before using the tweak target commands.

For all Tweak Target variations, the keep option prevents the destruction of the original geometry after the operation and
the preview option temporarily displays the new geometry configuration without actually changing the geometry.

Tweaking a Pair of Curves to a Corner

When creating mid-surface geometry it is often useful to extend surfaces to form a corner. To handle this specific but
common case use the tweak corner command.

Tweak Curve <id> <id> Corner [preview]

Figure 7 shows a typical tweak corner example. Notice that surfaces are extended/trimmed to intersect at a corner.

Figure 7. Tweaking two curves to a corner

The preview option temporarily displays the new geometry configuration without actually changing the geometry.

Tweaking Surfaces

The following options of the Tweak Surface command are available. Command syntax and examples follow below.

Tweaking a Surface Using an Offset
Tweaking a Surface by Moving
Tweaking Surfaces to Target Surfaces
Removing a Surface

Tweaking a Conical Surface

152

CUBIT 11.0 User Documentation

Tweaking a Surface Using an Offset

Tweak Surface <id_range> Offset <value> [keep]

The Tweak Offset form of the command offsets an existing set of surfaces and extends the attached surfaces to meet
them. A positive offset value will offset the surface in the positive surface normal direction while a negative value will go
the other way. Figure 1 shows a simple example of offsetting. Note that you can also offset whole groups of surfaces at
once. The keep option will retain the original surfaces and curves.

Offzet in

Positive
Direction
X, ?‘f, |:>
- Offzet in
¥ g Megative
Direction

Figure 1. Tweak Offset

Tweaking a Surface by Moving

The Tweak move form of the command simply moves the given surfaces along a vector direction. The direction can be
specified either absolutely or relative to other geometry entities in the model (from entity centroid to location). Note that
when moving a surface for tweak, the surface is moved and the surface and the adjoining surfaces are extended or
trimmed to match up again. So, for example, moving a vertically oriented planar surface in the vertical direction will have
no effect. In this example, if you move the surface 10 in the x and 5 in the y the effect will be to move it simply 10 in the x.
You can also use this form of the command to move a protrusion around - just be sure to specify all of the surfaces on the
protrusion for moving. The last form of the command can be used to move a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id> Location
{Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id> Location <x_val>
<y_val><z_val> [Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [keep]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val> [Except [X][Y][Z]]
[keep]

Tweaking Surfaces to Target Surfaces

The Tweak target form of the command actually replaces the given surfaces with a copy of the new surfaces, then
extends and trims surfaces to match up. This can be useful for closing gaps between components or performing more
complicated modifications to models. The command syntax is:

Tweak Surface <id_list> Target {Surface <id_list>[EXTEND|noextend] | Plane (options)} [keep]
[preview]

Tweak Surface <id_list> Replace [With] Surface <id_list> [keep] [preview]

The Plane option allows a plane to specified instead of target surface(s).

153

CUBIT 11.0 User Documentation

Single target surfaces are automatically extended so that the tweaked body will fully intersect the target. Unfortunately,
extending multiple target surfaces can sometimes result in an invalid target, so the option is given to tweak to unextended
targets with the noextend option. In this case, the tweaked body must fully intersect the existing targets for success. If
you experience a failure when tweaking to multiple targets or the results are unexpected, it is recommended to try the
noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS geometry engine). It is
recommended to always preview before using the tweak target commands.

Figure 2 shows a simple example.

Replace this
surface...

—

Wyith this one

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface

The Tweak remove command allows you to remove surfaces from a model by extending the adjacent surfaces to fill in
the resulting gaps. It is identical to the Remove Surface command. See Removing Surfaces for a description of the
command options.

Tweak Surface <id_list> Remove [EXTEND|noextend] [keepsurface] [keep]

Tweaking a Conical Surface

The Tweak cone form of the command is used to replace a conical projection with a flat circular surface. This command
is useful for simplifying bolt holes. The command syntax is.

Tweak Surface <id_range> Cone

The following is a simple example illustrating the use of the tweak surface cone command.

154

CUBIT 11.0 User Documentation

Figure 3. Conical bolt hole before and after tweaking

Tweak Remove Topology

The Tweak Remove Topology command removes curves and surface from a model and replaces them with new
topology. The reconstruction of the new topology and the stitching of it into the model is done using real solid modeling
kernel operations. This command is intended to be used on small curves and surfaces in the model. The command tries
to find small curves/surfaces neighboring the specified topology and includes these neighbors in the removal process.
Thus, the command can often be used to remove networks of small features just by specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | curve <id_range> | surface <id_range> curve
<id_range>} small_curve_size <val> backoff_distance <val>

155

CUBIT 11.0 User Documentation

The small_curve_size is input by the user, and is used to calculate the small curves and surfaces. The
backoff_distance value specifies how far away from the original topology cuts are made to cut out the old topology and
stitch in the new topology. The removed topology is replaced by simplified topology where possible often resulting in a
dimension reduction of the original topology. Extraneous curves that are introduced during the cutting and stitching
process are regularized out if possible using the solid modeling kernel regularize functionality or are composited out using
virtual geometry if the regularization is not possible.

Note: This command is currently only implemented for ACIS and Catia models.

Example

reset

set attribute on

import acis "test10.sat"

separate body all

set attribute off

Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

156

CUBIT 11.0 User Documentation

157

CUBIT 11.0 User Documentation

Figure 1. Tweak Remove Topology command

Removing Geometric Features

e Vertex Removal
e Surface Removal

The Remove will remove surfaces or vertices from bodies. Adjacent surfaces or curves will be extended, where possible,
to fill in remaining gaps. The remove command is useful for replacing filleted edges with sharp corners.

Removing Vertices

At times you may find that you have an extraneous vertex in your model. This would be a vertex connected to two and
only two edges. This stray vertex can cause unwanted mesh artifacts, due to the fact that a mesh node MUST lie on this
vertex, thereby disallowing the possibility of movement for better quality. Fortunately there is a relatively easy way of
getting rid of this stray vertex using the tweak surface command.

Tweak Surface <id> replace with Surface <same_id>

Note that you are replacing a surface with itself. In doing so, the geometry engine will do an intersection check on that
surface, and should realize that the vertex doesn't need to be there.

Removing Surfaces

e Remove Sliver Surfaces

158

CUBIT 11.0 User Documentation

The remove surface command removes surfaces from bodies. By default, it attempts to extend the adjoining surfaces to

fill the resultant gap. This is a useful way to remove fillets and rounds and other features such as bosses not needed for
analysis. See Figure 1 for an example of this process. The syntax for this command is:

Remove Surface <id_range> [EXTEND|noextend] [keepsurface] [keep] [individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the body. This is sometimes
useful for repairing bad geometry - the surface can be rebuilt with surface from curves or a net surface, etc.., then
combined back onto the body.

The keep option will retain the original body and put the results of the remove surface in a new body.The keepsurface
option will retain the surface which was removed.

The individual option will remove surfaces one-by-one instead of as a group. If one removal fails, the rest are still
attempted. Without the individual option, no surface is removed unless they are all able to be removed.

This command is identical to the Tweak Surface Remove command.

— Femaove =
! :-F filletsfrounds

3 Remove ' \
" protrusions and . —_—

e Nt ;’?hules L 7
P i -— —_-____::—_—-______ A |
i i Tl
: } T
L]]
v+ Hemove | 1 J
v individual / y .
i ! 1 ¢
“.__surfaces £ ' /

e / T /

Figure 1. Remove Surface Example

Remove Sliver Surface

This command uses the ACIS remove surface capability on surfaces that have area less than a specified area limit.

When ACIS removes a surface it extends the adjoining surfaces and reintersects them to fill the gap. If it is not possible to
extend the surfaces or if the geometry is bad the command will fail. The syntax for this command is:

Remove Slivers Body <id_range> [EXTEND|noextend] [keepsurface] [keep] [arealimit
[<double>]]

Default arealimit = 0.1
The noextend, keepsurface and keep options operate as for the remove surface command. The arealimit option allows
the user to set the area below which surfaces will be removed.

Trimming and Extending Curves

Curves can be trimmed or extended with the following command:

Trim Curve <id> Atintersection {Curve|Vertex <id>} Keepside Vertex <id> [near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex location. When trimming to
another curve, the curves must physically intersect unless they both are straight lines in which case the near option is
available. With the near option the closest intersection point is used to the other line - so it is possible to trim to a curve
that lies in a different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected to the closest
location on the curve or an extension of the curve if possible.

159

CUBIT 11.0 User Documentation

The Keepside vertex is needed to determine which side of the curve to keep and which side to throw away. This vertex
need not be one of the curve's vertices, nor does it need to lie on the curve. However, if it is not on the curve it will be
projected to the curve and that location will determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it is a free curve a new curve
is created and the old curve is removed. The figures below show several examples of trimming/extending curves.

Trimming a Curve

Trim to
Curve

Heepzide vertex

=
Figure 1. Trimming a Curve to an Intersecting Curve
Trirm to
CUrve
I/ Keepside Vertex
=

Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Trim to
Wertex

Keepside Wertex

/

Figure 3. Trimming a Curve to a Vertex

160

CUBIT 11.0 User Documentation

Extending a Curve

Tritm to
Curve

Keepside vertex

/

Figure 4. Extending a Curve to An Intersecting Curve

Trim to
Yertex

Keepside Vettex

/

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

Automatic Geometry Clean-up

The automated geometry clean-up commands are used to automatically clean up geometry in preparation for meshing.
These commands are built in to the ITEM interface, but they can also be used on their own. They include:

Automatic Forced Sweepability
Automatic Small Curve Removal
Automatic Small Surface Removal
Automatic Surface Split

Automatic Forced Sweepability

In some cases, a volume can be "forced" into a sweepable configuration by compositing surfaces on the linking surfaces.
The automatic forced sweep command will attempt to automatically composite linking surfaces together to create a
sweepable topology. This command can be useful in cases where there are many linking surfaces that prohibit
sweepability and are not needed to define the mesh. It is assumed that the user has assigned the source and target
surfaces for the sweep prior to calling this function. CUBIT will try to composite linking surfaces together to get rid of
problems such as 1) non-submappable linking surfaces, 2) interior angles between curves of a surface that deviate far
from multiples of 90 degrees, and 3) surfaces with curves smaller than the small curve size, if a small curve size is
specified. This command is incorporated into the ITEM GUI, but is also available from the command line using the
following command syntax.

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size <val>]

161

CUBIT 11.0 User Documentation

The small_curve_size qualifier is an optional argument. If a curve size is specified, the command will try to remove
surfaces with curves smaller than this size by compositing the surface with adjacent surfaces.

Example

The following cylinder has been webcut and had surface splits so that it is not sweepable. The split surface command has
also introduced 3 small curves on the surfaces. After the source and target surfaces are set, the force sweepability
command is issued to automatically composite neighboring surfaces to make the volume sweepable and remove the
small curves. The results are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

Figure 1. Linking surfaces are composited to force a sweepable volume topology

Automatic Small Curve Removal

The automatic small curve removal command uses composites and collapse curves commands to automatically remove
small curves from a volume. This is useful for removing small or unnecessary details from a model to facilitate meshing
algorithms. The user enters a small curve size. Any curve smaller than this specified size will be removed. This command
is issued from the ITEM gui. More information can be found by reading the section entitled Small Details in the Model in
the ITEM documentation. This command can also be called from the command line. The syntax of this command is:

Auto_clean Volume <id_range> small_curves Small_curve_size <val>

Note: The automatic curve removal should be used with caution, as the user has little control over how curves are
removed.

Example:

The cylindrical model has 3 small curves just less than 0.7. The remove small curves command will remove two of the
small curves by compositing two neighboring surfaces and the third using the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

162

CUBIT 11.0 User Documentation

Figure 1. Automatic small curve removal on a cylinder

Automatic Small Surface Removal

This auto clean command will attempt to remove small and narrow surfaces from the model by compositing them with
neighboring surfaces. The user specifies a small curve size value. This value is used in two different ways. First, a small
area is calculated as the small curve size squared. This value is used to compare against when looking for small surfaces.
The small curve size is also used to identify surfaces that are narrower than the small curve size.

Auto_clean Volume <id_range> small_surfaces Small_curve_size <val>

Example

The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are composited to remove these.

Figure 1. Automatic small and narrow surface removal on a cylinder

163

CUBIT 11.0 User Documentation

Automatic Surface Split

This auto clean command will attempt to automatically split narrow regions of surfaces. In this context, any surface that
contains a portion that narrows down to a small angle is considered a narrow region. The command will use the split
command from the underlying solid modeling kernel. The user specifies a size that defines what it narrow. This command
also propagates the splits to neighboring narrow surfaces. This command is usually used as a preprocessor to the "tweak
remove_topology" command but can also be used on its own.

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>
Example

The model has a surface that necks down to a narrow region. This surface also has some neighboring narrow surfaces to
which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

Geometry Decomposition

Geometry decomposition is often required to generate an all-hexahedral mesh for three-dimensional solids, as fully
automatic all-hex mesh generation of arbitrary solids is not yet possible in CUBIT. While geometry booleans can be used
for decomposition (and are the basis of the underlying implementation of advanced decomposition tools described here),
CUBIT has a webcut capability specially tuned for decomposition. It is also useful to split periodic surfaces to facilitate
quad and hex meshing.

Web Cutting

Splitting Geometry
Section Command

Separating Multi-Volume Bodies

Web Cutting

The term "web cutting” refers to the act of cutting an existing body or bodies, referred to as the "blank", into two or more
pieces through the use of some form of cutting tool, or "tool". The two primary types of cutting tools available in CUBIT are
surfaces (either pre-existing surfaces in the model or infinite or semi-infinite surfaces defined for webcutting), or pre-
existing bodies.

The various forms of the webcut command can be classified by the type of tool used for cutting. These forms are
described below, starting with the simplest type of tool and progressing to more complex types.

e Webcut Using the Chop Command
e Webcut Using Planar or Cylindrical Surface
e Webcut with Arbitrary Surface

164

CUBIT 11.0 User Documentation

Webcut Using Tool or Sheet Body
Webcut by Sweeping Curves or Surfaces

Webcut Options
Webcut Preview

General Notes

The primary purpose of web cutting is to make an existing model meshable with the hex meshing algorithms available in
CUBIT. While web cutting can also be used to build the initial geometric model, the implementation and command
interface to web cutting have been designed to serve its primary purpose. Several important things to remember about
webcutting are as follows:

e The geometric model should be checked for integrity (using imprinting and merging) before starting the
decomposition process. This makes the checking process easier, since there are fewer bodies and surfaces to
check. Once the model passes that initial integrity check, it is rare that decompositions using webcut will result
in a model that does not also pass the same checks.

e The use of the Imprint option can in cases save execution time, since it limits the scope of the imprint
operations and thereby works faster. The alternative is performing and Imprint All on the pieces of the model
after all decompositions have been completed; this operation has been made much faster in more current
releases of CUBIT, but will still take a noticeable amount of time for complicated models.

e While the Webcut commands make it very simple to cut your model into very many pieces, we recommend that
the user restrict the decomposition they perform to only that necessary for meshability or for obtaining an
acceptable mesh. Having more volumes in the model may simplify individual volumes, but may not always
result in a higher quality mesh; it will always increase the run time and complexity of the meshing task.

e When the webcut command is executed the associated geometry will be regularized. This behavior can be
changed, see geometry booleans.

The Appendix and the Power Tools Tutorial contain some examples that demonstrate the use of webcutting operations.

Chop Command

The chop command works similarly to a webcut command, but is faster. Given two bodies, the command will find the
intersection of the two bodies, and divide the main body into a body that lies outside the intersection, and a body that lies
inside the intersection. The tool body will be deleted, unless the keep option is specified. The syntax of the command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]

The nonreg option results in the bodies being non-regularized.

Web Cutting with a Planar or Cylindrical Surface

The commands used to webcut with a planar or cylindrical surface in CUBIT are:

Coordinate Plane
Planar Surface

Plane from 3 Points
Plane Normal to Curve

Cylindrical Surface
Previewing a Web Cut Plane

Coordinate Plane

In the command's simplest form, a coordinate plane can be used to cut the model, and can optionally be offset a positive
or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane {xplane|yplane|zplane} [Offset <val>]

[rotate <theta> about x|y|z <xval> <yval> <zval> [center <xval> <yval> <zval>]] webcut options
[preview]

165

CUBIT 11.0 User Documentation

The cutting plane can be rotated about a user-specified axis using the rotate option. The center of rotation can be
moved by using the center option.

Selecting the preview option allows the user to preview the webcutting plane.

Planar Surface

An existing planar surface can also be used to cut the model; in this case, the surface is identified by its ID as the cutting
tool.

Webcut {Volume|Body|Group} <id_range> [With] Plane Surface <surface_id> webcut options

The planar surface to be used for web cutting can also be previewed using the Draw Plane command.

Plane from 3 Points

Any arbitrary planar surface can be used by specifying three vertices that define the plane, and can optionally be offset a
positive or negative distance from this plane.

Webcut {Volume|Body|Group} <id_range> [With] Plane Vertex <vertex_1> [Vertex] <vertex_2>
[Vertex] <vertex_3> [Offset <value>] webcut options

The Draw Plane command will also provide a preview of the infinite plane used for web cutting for this case.

Plane Normal to Curve

The next command allows a user to specify an infinite cutting plane by specifying a location on a curve. The cutting plane
is created such that it is normal to the curve tangent at the specified location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve <curve_id>
{Position <xval><yval><zval> | Close_To Vertex <vertex_id>} webcut options

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve <curve_id>
{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut options

The position on the curve can be specified as:

A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
An xyz position that is moved to the closest point on the given curve.

The position of a vertex that is moved to the closest point on the given curve.

N =

The point on the curve can be previewed with the Draw Location On Curve command and the plane to be used for the
webcut can be previewed with the Draw Plane command.

Cylindrical Surface

Finally, A semi-infinite cylindrical surface can be used by specifying the cylinder radius, and the cylinder axis. The axis is
specified as a line corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points, or an
arbitrary point and the origin. The "center" point through which the cylinder axis passes can also be specified.

Webcut {Volume|Body|Group} <range> [With] Cylinder Radius <val> Axis {x|y|z|normal of

surface <id>| vertex <id_1> vertex <id_2>| <x_val> <y_val> <z_val>>} [center <x_val> <y_val>

<z_val>] webcut options

Previewing a Web Cut Plane

The ability to preview a plane prior to webcutting or creating the plane is possible with the following commands:

Draw Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id> [[intersecting] Body <id_range>]
[extended percentage|absolute <val>] [color ‘color_name']

166

CUBIT 11.0 User Documentation

Draw Plane Surface <surface_id> [[intersecting] Body <id_range>] [extended
percentage|absolute <val>] [color 'color_name']

Draw Plane {xplane|yplane|zplane} [offset <val>] [[intersecting] Body <id_range>] [extended
percentage|absolute <val>] [color 'color_name']

Draw Plane Normal To Curve <curve_id> {fraction <f> | distance <d> | position
<xval><yval><zval> | close_to vertex <vertex_id>} [[from] vertex <vertex_id> (optional for
'fraction’ & 'distance’)] [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

The first passes a plane through 3 vertices, the second uses an existing plane, the third draws a plane normal to one of
the global axes, and the fourth draws a plane normal to the tangent of a curve at a location along the curve. By default,
the commands draw the plane just large enough to intersect the bounding box of the entire model with minimum surface
area. Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the size of the surface
by either a percentage distance or an absolute distance of the minimum area size. The default color is blue, but you can
specify a different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

The cylinder used for the webcut operation can be previewed using the Draw Cylinder Command.
Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>} [Center
<x_val><y_val> <z_val>] [[intersecting] Body <id_range>] [extended percentage|absolute
<val>] [color 'color_name']
The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coordinate axis,
the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center point through which
the cylinder axis passes can also be specified.
By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire model.
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the cylinder by

either a percentage distance or an absolute distance of the cylinder length. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Web Cutting with an Arbitrary Surface

An arbitrary "sheet" surface can also be used to webcut a body. This sheet need not be planar, and can be bounded or
infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut options]

Webcut {blank} with sheet extended [from] surface <id> [webcut options]
In its first form, the command uses a sheet body, either one that is pre-existing or one formed from a specified surface.
Note that in this latter case the (bounded) surface should completely cut the body into two pieces. Sheet bodies can be
formed from a single surface, but can also be the combination of many surfaces; this form of webcut can be used with
quite complicated cutting surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be extended in all directions possible.
Note that some spline surfaces are limited in extent, and so these surfaces may or may not completely cut the blank.

Web Cutting using a Tool or Sheet Body

Any existing body in the geometric model can be used to cut other bodies; the command to do this is:
Webcut {blank} tool [body] <id> [webcut options]
This simply uses the specified tool body in a set of boolean operations to split the blank into two or more pieces.

Another form of the command cuts the body list with a temporary sheet body formed from the curve loop. This is the same
sheet as would be created from the command Create Surface Curve <id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range> NOIMPRINT|Imprint]
[NOMERGE|Merge] [group_results]

167

CUBIT 11.0 User Documentation

Webcut {Volume|Body|Group} <id_range> [With] Bounding Box
{Body|Volume|Surface|Curve|Vertex <id_range>} [Tight] [[Extended] {Percentage|Absolute}
<val>] [{X|width} <val>] [{Y|Height} <val>] [{Z|Depth} <val>]] NOIMPRINT|Imprint]
[NOMERGE|Merge] [group_results]

The final form of this command webcuts a body with the bounding box of another entity. This bounding box may be tight
or extended.

Figure 1. Cylinder webcut with bounding box of prism.

Web Cutting by Sweeping Curves or Surfaces

Webcutting with sweeping creates a swept tool body in the same step as the webcut operation. There are 4 general ways
to webcut with sweeping:

Webcut by sweeping a surface along a trajectory
Webcut by sweeping a surface about an axis
Webcut by sweeping a curve(s) along a trajectory
Webcut by sweeping a curve(s) about an axis

Webcut by sweeping a surface along a trajectory

This command allows one or more surfaces to be swept, creating a volume that is used for the webcut. If more than one
surface is specified, the surfaces must contain coincident curves. The surfaces are swept along a direction and some
distance or perpendicular and some distance or along a curve. For best results the curve to sweep the surface along
should intersect one of the surfaces. The through_all option will sweep the surfaces along the trajectory far enough so as
to intersect all input bodies. The stop surface <id> option is used to identify a surface at which the sweep will stop. If
using this option when sweeping along a curve, the sweep will stop at the first place possible. The up_to_next option
indicates that the user wants to webcut with only the first water tight volume that forms as a result of the intersection
between sweep and union of all blank bodies. The up_to_next option should not used when defining the webcut with a
vector and a distance or perpendicular and a distance. The through all options should not used when defining the
webcut with a vector and a distance

Webcut {Volume|Body|Group} <id> sweep surface <id_range> {vector <x> <y> <z> [distance
<distance>] | perpendicular distance <distance>} [through_all | stop surface <id>| up_to_next
] [webcut options]

Webcut {Volume|Body|Group} <id> sweep surface <id_range> along curve <id> [through_all |
stop surface <id> | up_to_next] [webcut options

168

CUBIT 11.0 User Documentation

resultant webcut

sweeping a surface in a direction

along a curve to a stop surface

resultant webcut

Figure 1. Examples of web cutting with swept surfaces

Webcut by sweeping a surface about an axis

This command allows a one or more surfaces to be swept, creating a volume that is used for the webcut. If more than one
surface is specified, the surfaces must contain coincident curves. The surface is swept about a user-defined axis or about
one of the x y z coordinate axes and a specified angle. The stop surface <id> option is used to identify a surface at
which the sweep will stop. The up_to_next option indicates that the user wants to webcut with only the first water tight
volume that forms as a result of the intersection between sweep and union of all blank bodies. For these 2 options to work
correctly the user must specify an angle large enough for the rotation to traverse the stop surface or the up_to_next
surface.

Webcut {Volume|Body|Group} <id> sweep surface <id_range> {axis <xpoint ypoint zpoint
xvector yvector zvector> | xaxis | yaxis | zaxis } angle <degrees> [stop surface <id> |
up_to_next] [webcut options]

Webcut by sweeping a curve(s) along a trajectory

This command allows a curve(s) to be swept, creating a surface that is used for the webcut. If multiple curves are
specified, they must share vertices and form a continuous path. The curve(s) is swept along a direction and some
distance or along another curve. If sweeping a curve(s) along another curve, for best results the curve(s)-to-swept and the
curve to sweep along should intersect at some point. The stop surface <id> option is used to identify a surface at which
the sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first place possible. The
through_all option will sweep the curve(s) along the trajectory far enough so as to intersect all input bodies. For the
webcut to be successful, the swept curve(s) must completely traverse a portion of a blank body(s), cutting off a complete
piece of the blank body(s). Option through_all should not be used when defining the webcut with a vector and a distance
or along a curve.

Webcut {Volume|Body|Group} <id> sweep curve <id_range> {vector <x> <y> <z> [distance
<distance>| along curve <id>] } [through_all | stop surface <id>] [webcut options]

169

CUBIT 11.0 User Documentation

Webcut by sweeping a curve(s) about an axis

This command allows a curve to be swept, creating a surface that is used for the webcut. If multiple curves are specified,
they must share vertices and form a continuous path. The curve(s) is swept about a user-defined axis or about one of the
X y z coordinate axes and a specified angle. For the webcut to be successful, the swept curve(s) must completely traverse
a portion of a blank body(s), cutting off a complete piece of the blank body(s). The stop surface <id> option is used to
identify a surface at which the sweep will stop. For this option to work correctly the user must specify an angle large
enough for the rotation to traverse the stop surface.

Webcut {Volume|Body|Group} <id> sweep curve <id_range> {axis <xpoint ypoint zpoint

xvector yvector zvector> | xaxis | yaxis | zaxis } angle <degrees> [stop surface <id>]
[webcut options]

Web Cutting Options

The following options can be used with all webcut commands:
Group_results: The various pieces resulting from the previous command are placed into a group named “webcut_group'.

[Imprint | Noimprint]: In its default implementation, webcutting results in the pieces not being imprinted on one another;
this option forces the code to imprint the pieces after webcutting.

[Merge | Nomerge]: By default, the pieces resulting from an imprint are manifold; specifying this option results in a merge
check for all surfaces in the pieces resulting from the webcut.

Web Cutting Preview

Preview a Webcutting Plane

The ability to preview a plane prior to webcutting or creating the plane is possible with the following commands:

Draw Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id> [[intersecting] Body <id_range>]
[extended percentage|absolute <val>] [color ‘color_name']

Draw Plane Surface <surface_id> [[intersecting] Body <id_range>] [extended
percentage|absolute <val>] [color 'color_name']

Draw Plane {xplane|yplane|zplane} [offset <val>] [[intersecting] Body <id_range>] [extended
percentagelabsolute <val>] [color 'color_name']

Draw Plane Normal To Curve <curve_id> {fraction <f> | distance <d> | position
<xval><yval><zval> | close_to vertex <vertex_id>} [[from] vertex <vertex_id> (optional for
'fraction’ & 'distance’)] [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color ‘color_name']

The first passes a plane through 3 vertices, the second uses an existing plane, the third draws a plane normal to one of
the global axes, and the fourth draws a plane normal to the tangent of a curve at a location along the curve. By default,
the commands draw the plane just large enough to intersect the bounding box of the entire model with minimum surface
area. Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the size of the surface
by either a percentage distance or an absolute distance of the minimum area size. The default color is blue, but you can
specify a different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Preview a Web Cutting Cylinder

The ability to preview a cylinder prior to webcutting is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>} [Center
<x_val><y_val> <z_val>] [[intersecting] Body <id_range>] [extended percentage|absolute
<val>] [color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coordinate axis,

the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center point through which
the cylinder axis passes can also be specified.

170

CUBIT 11.0 User Documentation

By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire model.
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the cylinder by
either a percentage distance or an absolute distance of the cylinder length. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Splitting Geometry

The Split command divides curves or surfaces into multiple entities. The command results are similar to imprinting.
However, vertex and/or curve creation is not necessary for the split command.

e Split Curve

(] Split Surface
(] Split Periodic Surfaces

Split Curve

The Split Curve command will split a curve without the need for geometry creation (unlike imprinting). The syntax is shown
below.

Split Curve <id> [location on curve options] [Preview]

To split a curve, simply specify a location or a location on curve (see location specification). Using the Preview keyword
will draw the splitting location on the curve.

Split Surface

The Split Surface command divides one or more surfaces into multiple surfaces. The command results are similar to
imprint with curve. However, curve creation is not necessary for splitting surfaces. Three primary forms of the command
are available.

(] Split Across
(] Split Extend
(] Split (Automatically)

The first form splits a single surface using locations while the second splits by extending a surface hard-line until it hits a
surface boundary. The split automatic splits either a single surface or a chain of surfaces in an automatic fashion.

Split Across

Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview [Create]]

Split Surface <id> Across Location <multiple locs> Onto Curve <id> [Preview] Create]]
This command splits a surface with a spline projection through multiple locations on the surface. See Location, Direction
and Axis Specification for a detailed description of the location specifier. Figure 1 shows a simple example of splitting a

single surface into two surfaces. A temporary spline was created through the three specified locations (Vertex 5 6 7), and
this curve was used to split the surface.

split surface 1 across location vertex 56 7

171

CUBIT 11.0 User Documentation

Vertex 7
=

Vertex G
=urface 1 u Surface 2 Surface 3

Vertex 5
-

Figure 1 - Splitting Across with Multiple Locations

The Pair keyword will pair locations to create multiple surface splitting curves (each defined with two locations). An even
number of input locations is required. Figure 2 shows an example:

split surface 1 across pair vertex 57 6 8

Vertex T Vertex 8

- - » »
Surface 1 |::> Surface 2| Surface 2 | Surface 4
Vertex 5 Verlex B

Figure 2 - Splitting Across with Pair Option

The Preview keyword will show a graphics preview of the splitting curve. If the Create keyword is also specified, a free
curve (or curves) will be created - these are the internal curves that are used to imprint the surfaces.

The Onto Curve format of the command takes one or more locations on one side of the surface and projects them onto a
single curve on the other side of the surface. Figure 3 shows an example:

split surface 1 across vertex 5 6 onto curve 4

Verfex 5 Verex 6
- -— L L 3

Surface 1 |:> Surface 2 | Surface 3 | Surface 4

Curve 4

Figure 3 - Splitting Across with Onto Curve
Split Extend

The Split Extend function can be called with the following command:

172

CUBIT 11.0 User Documentation

Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]
With the following settings:

Set Split Surface Extend Normal {on|OFF}

Set Split Surface Extend Gap Threshold <val>

Set Split Surface Extend Tolerance<val>
This command splits a surface by extending a surface hard-line until it hits a surface boundary. Figure 4 shows a simple
example of extending a curve. The hard-line curve was extended from the specified vertex until it hit the surface

boundary.

split surface 1 extend vertex 2

Surface 1 Surface 1
Vartex 1 Vertex 2 Verex 1 Vertex 2

Figure 4 - Splitting by Extending Hard-line

The auto keyword will search for all hard-lines and extend them according to the Split Surface Extend settings. Figure 5
shows an example:

split surface 1 extend auto

Vertex 1 Vertex 2 1 Vertex 2
Vertex 1
Surface 3

Figure 5 - Splitting by Extending with Auto Option

The preview keyword will show a graphics preview of the splitting curve. If the create keyword is also specified, a free
curve (or curves) will be created - these are the internal curves that are used to imprint the surfaces.

The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the hard-line so that it is normal to
the curve it will intersect. An example of this is in Figure 6:

set split surface normal on
split surface 1 extend vertex 2

173

CUBIT 11.0 User Documentation

Surface 1 Surface 1
Vertex 1 Vertex 2 Vertex 1 Vertex 2

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON

Cubit uses the gap threshold to decide whether or not to extend a hard-line when the user specifies auto. If the distance
between a vertex on a hard-line and the curve it will hit is greater than the gap threshold, then Cubit will not extend that
hard-line. The default value is INFINITY, and can be set to any value. To reset the value back to INFINITY, set the gap
threshold to -1.0. Note: This setting only applies when using the keyword auto. An example of using the gap
threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

® Vertex 2 |©O o Vertex 2 | O

% Vertex 1 % % Vertex 1 3

O et B e
Surface 1 Surface 1

Vertex 115 = 2.0 fram Curve 1
Vartex 2 is < 2.0 from Curve 2

Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.
(Notice Vertex 1 was not extended because it exceeded the gap threshold)

The tolerance setting can be used to avoid creating short curves on the surface boundary. If Cubit tries to extend a hard-
line that comes within tolerance of a vertex, it will instead snap the extension to the existing vertex. An example of this is
shown in Figure 8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

Verex 3 Vertex 3
/_,,. s Projected
intersection
Vertex1 Vertex 2 15 0.8 from Vertex 1 Vertex 2
Yertex 3
Surface 1 Surface 1

174

CUBIT 11.0 User Documentation

Figure 8 - Extending Hard-lines with Tolerance
(Notice the extension snapped to Vertex 3)

Split (Automatically)

This form of the command splits a single surface or a chain of surfaces in an automatic fashion. It is most convenient for
splitting a fillet or set of fillets down the middle - oftentimes necessary to prepare for mesh sweeping.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>]
[Segment|Fraction|Distance <val> [From Curve <id>]] [Through Vertex <id_list>] [Parametric
<on|OFF>] [Tolerance <val>] [Preview [Create]]

Logical Rectangle

Split Orientation

Corner Vertex <id_list>

Direction Curve <id>

Segment|Fraction|Distance <val> [From Curve <id>]
Through Vertex <id_list>

Parametric <on|OFF>

Tolerance <val>

Preview [Create]

Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets and specifying sweep sources as
shown (with the sweep target underneath the volume). The surface splits are shown in blue.

Surface Split Source surfaces

Figure 9 - Splitting Fillets to Facilitate Sweeping

Each surface is always split with a single curve along the length of the surface (or multiple single curves if the Segment
option is used). The splitting curve will either be a spline, arc or straight line.

Logical Rectangle

The Split Surface command analyzes the selected surface or surface chain to find a logical rectangle, containing four
logical sides and four logical corners; each side can be composed of zero, one or multiple curves. If a single surface is
selected (with no options), the logical corners will be those closest to 90° and oriented such that the surface will be split
parallel to the longest aspect ratio of the surface. If a chain of surfaces is selected, the logical corners will include the
two corners closest to 90° on the starting surface of the chain and the two corners closest to 90° on the ending surface of
the chain (the split will always occur along the chain).

175

CUBIT 11.0 User Documentation

In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between these corner vertices the logical
sides are defined; these sides are described in Table 1. The default split occurs from the center of Side 1 to the center of
Side 3 (parallel to the longest aspect ratio of the surface), and is shown in blue.

5 5
N/ X
B Logical Corners |3 |:>

/\/

Figure 10 - Split Surface Logical Properties

6

Table 1. Listing of Logical Sides for Figure 10

Logical Side Corner Vertices Curve Groups
1 1-2 1
2 2-5 2,34
3 5-6 5
4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the resultant splits.

176

CUBIT 11.0 User Documentation

10

w

Logical Rectangle

A4,

-
T -

1w 10

Corners 1-2-5-5

|/ 9
2| 3

5._4\4 : 31

g 7

Corners 2-3-4-5

Figure 11 - Different Possible Logical Rectangles for Same Surface

Table 2 shows various surfaces and the resultant split based on the automatically detected or selected logical rectangle.

Note that surfaces are always traversed in a counterclockwise direction.

Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in Blue)

3 2
Y T 1-2-3-4
l l (using aspect ratio)
4 1
3 2
4-1-2-3

(user selected)

Ordered Corners (to form the Logical Rectangle)

177

CUBIT 11.0 User Documentation

G a3
1-2-5-6
1 2
G a3
2-5-6-1
1 2
3 2
I T 1-2-3-4
l l (split is always along the chain)
4 1
3. - 2
1-2-3-4
(notice triangular surfaces along the chain)
4I l1
3
1-1-2-3
(note side 1 of the logical rectangle is collapsed; side 3 is
from vertex 2 to 3)
1 2

178

CUBIT 11.0 User Documentation

3
1-2-2-3
(note side 2 of the logical rectangle is collapsed)
1 2
| T
4 1-2-3-4
2 l 5
| T
4 1-2-4-4
2 l
1 2 11-2-2

1-1-2-2

(selected automatically)

Split Orientation

If a chain of surfaces are split, the surfaces will always be split along the chain. The command will not allow disconnected
surfaces.

For a single surface, the split direction logic is a bit more complicated. If no options are specified, the surface aspect ratio
determines the split direction - the surface will be split parallel to the longest aspect ratio side through the midpoint of each
curve. This behavior can be overridden by the order the Corner vertices are selected (the split always starts on the side
between the first two corners selected), the Direction option, the From Curve option, or the Through Vertex list.

Table 3 shows examples of the various split orientation methods. These options are explained in more detail in the
sections below.

Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

179

CUBIT 11.0 User Documentation

Multiple surfaces are always split along the chain

Parallel to longest surface aspect ratio (default)

Corner Vertex412 3

(split always starts on side 1 of the logical rectangle)

Curve 1

Direction Curve 1

Curve 1 From Curve 1 Fraction .75
or

From Curve 1 Distance 7.5

<+ length=100—— %

ertex B

Wertex 5
\ Through Vertex 5 6

Corner Specification

180

CUBIT 11.0 User Documentation

The Corner option allows you to specify corners that form logical rectangle the algorithm uses to orient the split on the
surface. When analyzing a surface to be split, the software automatically selects the corners that are closest to 90°. The
Preview option displays the automatically selected corners in red. Sometimes incorrect corners are chosen, so you must
specify the desired corners yourself. The split always starts on the side between the first two corners selected and finishes
on the side between the last two corners selected. Figure 12 shows a situation where the user had to select corners to get
the desired split.

2 1 gl
Corners 1-2-3-4 Caorners 1-2-4-5
N L\ "
im 4 l4
Automatic Corners User Specified Corners

Figure 12 - Selecting the Desired Corners

The split can be directed to the tip of a triangular shaped surface by selecting that corner vertex twice (at the start or end
of the corner list) when specifying corners, creating a zero-length side on the logical rectangle. A shortcut exists whereas
if you specify only 3 corner vertices, the zero-length side will be directed to the first corner selected. If you specify only 2
corner vertices, a zero-length side will be directed to both the first and second corner you select. Table 4 shows these
examples. Note the software will automatically detect triangle corners based on angle criteria - the corner selection
methods for zero-length sides explained in this section need only be applied if the angles are outside of the thresholds
specified in the Set Split Surface Auto Detect Triangle settings.

Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification
1 T 1-2-4-4- or 4-4-1-2
) or
5 l 4-1-2 (shortcut method)

1-1-2-2 or 2-2-1-1

1 2 or

1-2 or 2-1 (shortcut method)

Direction

The Direction option allows you to conveniently override the default split direction on a single surface. Simply specify a
curve from the logical rectangle that is parallel to the desired split direction. If Corners are also specified, the Direction
option will override the split orientation that would result from the specified corner order. The Direction option is not valid
on a chain of surfaces. Figure 13 shows an example.

181

CUBIT 11.0 User Documentation

Split With
& Direction

Split Without
Direction

N

Direction Curve 1

\-_‘*

Figure 13 - Direction Specification Overrides Corner Order

Segment|Fraction|Distance

The Segment option allows you to split a surface into 2 or more segments that are equally spaced across the surface.
The Fraction option allows you to override the default 0.5 fractional split location. The Distance option allows you to
specify the split location as an absolute distance rather than a fraction. By specifying a From Curve, you can indicate
which side of the logical rectangle to base the segment, fraction or distance from (versus a random result). Table 5 gives
examples of these options.

Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

_____/f_h\ﬁ____ Segment 6 From Curve 1

Fraction .3 From Curve 1

Curve 1

r Distance = 3.0 Distance 3 From Curve 1

T Curve 1

182

CUBIT 11.0 User Documentation

Through Vertex

The Through Vertex option forces the split through vertices on surface boundaries perpendicular to the

split direction. Use this option if the desired fraction is not constant from one end of the surface to another or if a split
would otherwise pass very close to an existing curve end resulting in a short curve. Through vertices can be used in
conjunction with the Fraction option - the split will linearly adjust to pass exactly through the specified vertices. It is not
valid with the Segment option. The maximum number of Through Vertices that can be specified is equal to the number of
surfaces being split plus one. The selected vertices can be free, but must lie on the perpendicular curves. Table 6 gives
several examples.

Table 6 - Through Vertex Examples

Surface(s) Command Options

9
Fraction .3 From Curve 1 Through Vertex 9
Curve 1
Through Vertex56 7 8
5 g
Parametric

By default, split locations are calculated in 3D space and projected to the surface. As an alternative, split locations can be
calculated directly in the surface parametric space. In rare instances, this can result in a smoother or more desirable split.
The command option Parametric {on|Off} can be used to split the given surfaces in parametric space. Alternatively, the
default can be overridden with the Set Split Surface Parametric {on|OFF} command.

Tolerance

A single absolute tolerance value is used to determine the accuracy of the split curves. A smaller tolerance will force more
points to be interpolated. The tolerance is also used when detecting an analytical curve (e.g., an arc or straight line)
versus a spline. A looser tolerance will result in more analytical curves. The default tolerance is 1.0. The command option
Tolerance <val> can be used to split the given surfaces using the given tolerance. Alternatively, the default tolerance can
be overridden with the Set Split Surface Tolerance <val> command.

It is recommended to use the largest tolerance possible to increase the number of analytical curves and reduce the
number of points on splines, resulting in better performance and smaller file sizes. The Preview option displays the
interpolated curve points. Table 7 shows the effect of the tolerance for a simple example.

Table 7 - Effect of Tolerance on Split Curve

Surface Tolerance

183

CUBIT 11.0 User Documentation

Preview

The Preview keyword will show a graphics preview (in blue) of the splitting curve (or curves) and the corner vertices (in
red) selected for the logical rectangle. The curve preview includes the interpolated point locations that define spline
curves. Note that if no points are shown on the interior of the curve, it means that the curve is an analytical curve (line or
arc). If the Create keyword is also specified, a free curve (or curves) will be created - these are the internal curves that are
used to imprint the surfaces. Table 8 shows some examples.

Table 8 - Graphics Preview

Surface Curve Type

Spline

i

184

CUBIT 11.0 User Documentation

Arc (no preview points shown on interior of curve)

Settings

This section describes the settings that are available for the automatic split surface command. To see the current values,
you can enter the command Set Split Surface, optionally followed by the setting of interest (without specifying a value).

Set Split Surface Tolerance <val>
This sets the default tolerance for the accuracy of the split curves. See the Tolerance section for more information.
Set Split Surface Parametric {on|OFF}

This sets the default for whether surfaces are split in 3D (default) or in parametric space. See the Parametric section for
more information.

Set Split Surface Auto Detect Triangle {ON|off}
Set Split Surface Point Angle Threshold <val>
Set Split Surface Side Angle Threshold <val>

The split surface command automatically detects triangular shaped surfaces as explained in the section on Corners. This
behavior can be turned off with the setting above. Two thresholds are used when detecting triangles - the Point Angle
threshold and the Side Angle threshold, specified in degrees. Corners with an angle below the Point Angle threshold are
considered for the tip of a triangle (or the collapsed side of the logical rectangle). Corners within the Side Angle threshold
of 180° are considered for removal from the logical rectangle. In order for a triangle to actually be detected, corners for
both the point and side criteria must be met. The default Point Angle threshold is 45°, and the default Side Angle threshold
is 27°. Figure 14 provides an illustration.

3 o’
160"
™,
within Side Angle Threshold of 27 ° of 180°
4 (remove corner)
40"
below Foint Angle Threshold of 45
(collapse to this paint)
al
Without Triangle Detection With Triangle Detection

Figure 14 - Triangle Detection Settings

185

CUBIT 11.0 User Documentation

Split Periodic Surfaces

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic surfaces can in some cases
simplify meshing, and will result in curves and surfaces being added to the volume. The command used to split periodic
surfaces is:

Split Periodic Body {id_range|all}

This command splits all periodic surfaces in a body or bodies.

Separating Multi-Volume Bodies

The separate and split commands are used to separate a body with multiple volumes into a multiple bodies with single
volumes. The commands are:

Separate {Body|Volume} {id_range|all}
and
Split {Body|Volume} {id_range]all}

Only very rarely will either of these commands be needed. They are provided for the occasional instance that a multi-
volume body is found. These commands are interchangeable.

Section Command

This command will cut a body or group of bodies with a plane, keeping geometry on one side of the plane and discarding
the rest. The syntax for this command is:

Section {body|group} <id_range> [with] {xplane|yplane|zplane} [offset <value>]
[NORMAL |reverse] [keep]

Section {body|group} <id_range> with surface <id> [NORMAL|reverse] [keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset option is used to specify an
offset from the coordinate plane. In the second form, an existing (planar) surface is used to section the model. In either
case, the reverse keyword results in discarding the positive side of the specified plane or surface instead of the other side.
The keep option results in keeping both sides; the section command used with this option is equivalent to webcutting with
a plane.

Geometry Imprinting and Merging

Imprinting Geometry
Merging Geometry
Examining Merged Entities
Merge Tolerance

Unmerging
Using Geometry Merging to Verify Geometry

Geometry is created and imported in a manifold state. The process of converting manifold to non-manifold geometry is
referred to as "geometry merging", since it involves merging multiple geometric entities into single ones. When importing
mesh-based geometry, the merging step can be automatic. Imprinting is a necessary step in the merging process, which
ensures that entities to be merged have identical topology.

186

CUBIT 11.0 User Documentation

Imprinting Geometry

To produce a non-manifold geometry model from a manifold geometry, coincident surfaces must be merged together (See
Geometry Merging); this merge can only take place if the surfaces to be merged have like topology and geometry. While
various parts of an assembly will typically have surfaces, which coincide geometrically, an imprint is necessary to make
the surfaces have like topology.There are three types of imprinting. They are:

(] Reqular Imprinting

(] Tolerant Imprinting
(] Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular imprint command misses, the
Find Overlap command can be used.

Regular Imprinting
The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [keep]
A body can also be imprinted with curves, vertices or positions, and surfaces can be imprinted with curves. It is useful to
imprint bodies or surfaces with curves to eliminate mesh skew, generate more favorable surfaces for meshing, or create
hard lines for paving. Imprinting with a vertex or position can be useful to split curves for better control of the mesh or to
create hard points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [keep]

Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [keep]

Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]

Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter out imprint calls for bodies
which clearly don't intersect.

Imprint [Body] All

Tolerant Imprinting

Normal imprinting may be ineffective for some assembly models that have tolerance problems, generating unwanted
sliver entities or missing imprints altogether. Tolerant imprinting is useful for dealing with these tolerance challenged
assemblies. To determine coincident and overlap entities, tolerant imprinting uses the merge tolerance. A limitation of
tolerant imprinting is that it cannot imprint intersecting surfaces onto one another, as normal imprinting can. Tolerant
imprinting imprints only overlapping entities onto one other.

Imprint Tolerant {Body|Volume} <range>
Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the tolerance between surface and
curve(s) falls within the merge tolerance. The 'merge' option will merge the owning volume of the specified surface with all
other volumes that share any curves with this surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge]

Imprint Tolerant Surface <id> <id> with Curve <id_range> [merge]
The second form of the command imprints the specified bounding curves of one surface onto another surface and vice
versa. Any specified curves that are not bounding either of the two specified surfaces will not be imprinted. The 'merge’

option will merge all the volumes sharing any curve of these two surfaces, after the imprint.

It is recommended that normal imprinting be used when possible and tolerant imprinting be used only when normal
imprinting fails.

187

CUBIT 11.0 User Documentation

Mesh-Based Imprinting

Another form of the imprint command,
Imprint Mesh {Body | Volume} <id_list>

uses coincident mesh entities and_virtual geometry to create imprints. See the Partitioned Geometry section for more
information on this command.

Merging Geometry

The steps of the geometry merging algorithm used in CUBIT are outlined below:

Check lower order geometry, merge if possible

Check topology of current entities

Check geometry of current entities

If both entities are meshed, check topology of meshes.

If geometric topology, geometry, and mesh topology are alike, merge.

agrpLODE

Thus, in order for two entities to merge, the entities must correspond geometrically and topologically, and if both are
meshed must have topologically equivalent meshes. The geometric correspondence usually comes from constructing the
model that way. The topological correspondence can come from that process as well, but also can be accomplished in
CUBIT using Imprinting.

If both entities are meshed, they can only be merged if the meshes are topologically identical. This means that the entities
must have the same number of each kind of mesh entity, and those mesh entities must be connected in the same way.
The mesh on each entity need not have nodes in identical positions. If the node positions are not identical, the position of
the nodes on the entity with the lowest ID will be used in the resulting merged mesh.

There are several options for merging geometry in CUBIT.

Merge geometry automatically

Merge All [Group|Body|Surface|Curve|Vertex] [group_results]

All topological entities in the model or in the specified bodies are examined for geometric and topological correspondence,
and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type are merged. For example, if
Merge all surface is entered, only vertices which are part of corresponding surfaces being merged; vertices which

correspond but which are not part of corresponding surfaces will not be merged. This command can be used to speed up
the merging process for large models, but should be used with caution as it can hide problems with the geometry.

Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With
{Group|Body|Surface|Curve|Vertex} <id_range>][group_results]

All topological entities in the specified entity list, as well as lower order topology belonging to those entities, are examined

for merging. This command can be used to prevent merging of entities which correspond and would otherwise be merged,
e.g. slide surfaces.

Measure Vertex Coincidence

This command finds vertex pairs whose separation is greater than the merge_tolerance apart AND less than the
merge_tolerance * 10.0 apart. It is useful for determining if you need to expand merge tolerance to accomodate sloppy
geometry.

Measure Near Coincident Vertex <id_range>

188

CUBIT 11.0 User Documentation

Force merge specified geometry entities
Merge Vertex <id> with Vertex <id> Force
Merge Curve <id> with Curve <id> Force
Merge Surface <id> with Surface <id> Force
This command results in the specified entities being merged, whether they pass the geometric correspondence test or

not. This command should only be used with caution and when merging otherwise fails; instances where this is required
should be reported to the CUBIT development team.

Preventing geometry from merging
Body <id_range> Merge [On | Off]
Volume <id_range> Merge [On | Off]
Surface <id_range> Merge [On | Off]
Curve <id_range> Merge [On | Off]
Vertex <id_range> Merge [On | Off]

These commands provide a method for preventing entities from merging. If merging is set to off for an entity, merging
commands (e.g. "merge all") will not merge that entity with any other.

Examining Merged Entities

There are several mechanisms for examining which entities have been merged. The most useful mechanism is assigning
all merged or unmerged entities of a specified type to a group, and examining that group graphically. This process can be
used to examine the outer shell of an assembly of volumes, for example to verify if all interior surfaces have been merged.
To put all the merged or unmerged entities of a given type into a specified group, use the command:

Group {<’name'>|<id>} [Surface | Curve | Vertex] [Merged | Unmerged]
If the entity type is unspecified, surfaces will be assumed.
Entities can also be labelled in the graphics according to the state of their merge flag. See the Preventing geometry from

merging section for information on controlling the merge flag. To turn merge labeling on for a specified entity type, use the
command

Label {Vertex | Curve | Surface} Merge

Merge Tolerance

Geometric correspondence between entities is judged according to a specified absolute numerical tolerance. The
particular kind of spatial check depends on the type of entity. Vertices are compared by comparing their spatial position;
curves are tested geometrically by testing points 1/3 and 2/3 down the curve in terms of parameter value; surfaces are
tested at several pre-determined points on the surface. In all cases, spatial checks are done comparing a given position
on one entity with the closest point on the other entity. This allows merging of entities which correspond spatially but
which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which are at least this close will
pass the geometric correspondence test used for merging. The user may change this value using the following command:

Merge Tolerance <val>
If the user does not enter a value, the current merge tolerance value will be printed to the screen. There is no upper
bound to the merge tolerance, although in experience there are few cases where the merge tolerance has needed to be

adjusted upward. The lower bound on the tolerance, which is tied to the accuracy of the solid modeling engine in CUBIT,
is le-6.

189

CUBIT 11.0 User Documentation

Unmerging

The unmerge command is used to reverse the merging operation. This is often in cases where further geometry
decomposition must be done.

unmerge all
unmerge <entity_list>

Un-merging an entity means that the specified geometric entity and all lower-order (or child) entities will no longer share
non-manifold topology with any other entities. For example, if a body is unmerged, that body will no longer share any
surfaces, curves, or vertices with any other body.

[set] unmerge duplicate_mesh {on|off}

If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh of higher-order entities valid. For
example, if a surface shared by two volumes is to be unmerged and only one of the volumes is meshed, the surface mesh
will remain with whichever surface is part of the meshed volume.

When unmerging meshed entities, the default behavior of the code is that the placement if the mesh is determined by the
following rules:

e |f neither entity has meshed parent entities, the mesh is kept on one of the two entities.

e |f one entity has a meshed parent entity, the mesh is kept on
that entity.

e |f both entities have meshed parents, the mesh is kept on one
and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and whenever a meshed entity is
unmerged the mesh is always copied such that both entities remain meshed.

To get back to the default behavior, turn unmerge duplicate_mesh off.

Using Geometry Merging to Verify Geometry

Geometry merging is often used to verify the correctness of an assembly of volumes. For example, groups of unmerged
surfaces can be used to verify the outer shell of the assembly (see Examining Merged Entities.) There is other information
that comes from the Merge all command that is useful for verifying geometry.

In typical geometric models, vertices and curves which get merged will usually be part of surfaces containing them which
get merged. So, if a Merge all command is used and the command reports that vertices and curves have been merged,
this is usually an indication of a problem with geometry. In particular, it is often a sign that there are overlapping bodies in
the model. The second most common problem indicated by merging curves and vertices is that the merge tolerance is set
too high for a given model. In any event, merged vertices and curves should be examined closely.

Virtual Geometry

Composite Geometry
Partitioned Geometry
Collapsing Geometry

Simplify Geometry
Deleting Virtual Geometry

The Virtual Geometry module in CUBIT provides a way to modify the topology of the model without affecting the
underlying ACIS geometry representation and without making changes to the actual solid model. Virtual Geometry
includes the capability to composite or partition geometry as well as creates new virtual geometric entities. Virtual
Geometry operations are most often used as a tool for adjusting the geometry to allow mapping, sub-mapping or
sweeping mesh generation schemes to be applied.

190

CUBIT 11.0 User Documentation

The advantage to using Virtual Geometry is that all operations are reversible. With standard geometry modification
commands, changes are made to the underlying geometry representation and cannot be changed once effected. With
virtual geometry, the original solid model topology can be easily restored. This is useful when geometry modifications are
made in order to apply a particular meshing scheme. Virtual geometry can be applied and later removed once the part has
been meshed.

Composite Geometry

(] Composite Curves
(] Composite Surfaces

The virtual geometry module has the capability to combine a set of connected curves into a single composite curve, or a
set of connected surfaces into a single surface. The general purpose is to suppress or remove the child geometry
common to those entities being composited. For example, compositing a set of curves suppresses the vertices common
to those curves, thus removing the constraint that a node must be placed at that vertex location.
The basic form of the command to create composites is:

composite create {surface|curve} <id_list>

This command will composite as many surfaces (or curves) as possible, in many cases creating multiple composites.

The entities combined to create the composite must either all be unmeshed or all be meshed. A meshed composite
surface can not be removed unless the mesh is first deleted.

Care should be taken when compositing over large C* discontinuities as it may cause problems for the meshing
algorithms and may result in poor quality elements. C' discontinuities are corners or abrupt changes in the surface
normal.

The command to remove a composite is:

composite delete {surface|curve} <id>

Composite Curves

The full command for the creation of composite curves is:

Composite Create Curve <id_range> [keep vertex <id_list>] [angle <degrees>]
The additional arguments provide two methods to prevent vertices from being removed from the model or composited
over. The first method, keep vertex explicitly specifies vertices which are not to be removed. This option can also be used
to control which vertex is kept when compositing a set of curves results in a closed curve.
The angle option specifies vertices to keep by the angle between the tangents of the curves at that vertex. A value less

than zero will result in no composite curves being created. A value of 180 or greater will result in all possible composites
being created. The default behavior is an empty list of vertices to keep, and an angle of 180 degrees.

Composite Surfaces

The general command for composite surface creation is:

Composite Create Surface <id_range> [angle <degrees>] [nocurves] [keep [angle <degrees>]
[vertex <id_list>]]

Related Commands

Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited over. Composites will not be
generated where the angle between surface normals adjacent to the curve is greater than the specified angle.

191

CUBIT 11.0 User Documentation

When a composite surface is created, the default behavior is to also to composite curves on the boundary of the new
composite surface.

Curves are automatically composited if the angle between tangents at the common vertex is less than 15 degrees. The
nocurves option can be used to prevent any composite curves from being created.

The keep keyword can be used to change the default choice of which curves to composite. The arguments following the
keep keyword behave the same as for explicit composite curve creation. The nocurves and keep arguments are mutually
exclusive.

Controlling the Surface Evaluation Method for Composite
Surfaces

It typically takes longer to mesh a single composite surface than to mesh the surfaces used in the creation of the
composite. To improve speed, composite surfaces use an approximation method to evaluate the closest point to a
trimmed surface. However, this evaluation method may give poor results for composites of highly convoluted surfaces.

The virtual geometry module provides a way to change the way surfaces are evaluated using the following command:
Composite closest_pt surface <id> {gme|emulate}

The default behavior is to use the emulate method, as it is typically considerably faster. Specifying the gme option will
force the specified composite surface to use the exact calculation of the closest point to a trimmed surface, as provided by
the solid modeler. The gme option, however, can be considerably slower.

Composite Determination

The composite create surface command is non-deterministic in some circumstances. When three or more adjacent
surfaces are to be composited, all the surfaces may not be able to be composited into a single surface as illustrated in
Figure 1. In this case different subsets of the surfaces may be composited and the command will choose arbitrary subsets
to composite. As an example, there are three surfaces A, B, and C, all adjacent to each other. The common curve
between A and B is AB, the common curve between B and C is BC, and the common curve between A and C is CA. If the
curve BC cannot be removed, either due to the angle specified in the composite command, or because there is a fourth
surface, D, also using that curve, the command will arbitrarily choose to either composite A and B or A and C.

192

CUBIT 11.0 User Documentation

Figure 1. In some cases, the program will make a determination of which surfaces to composite.

Partitioned Geometry

Partitioning provides a method to introduce additional topology into the model, to better constrain meshing algorithms.
This is accomplished by splitting, or partitioning, existing curves or surfaces.

Partitioned Curves

Partitioned Surfaces

Partitioned Volumes

Using Mesh Intersections to Partition Surfaces
Removing Partitions

Partitioned Curves

There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position <xpos> <ypos> <zpos> |
[with] <vertex_list> | <node_list>}

The first two forms of the command create additional vertices and use those vertices to split a curve. The third form of the
command uses existing vertices to split the curve. The fourth form of the command uses existing nodes to split the curve.

Using the fraction option, vertices are created at the specified fractions along the curve (in the range [0,1].)
Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n is the number of fraction values
specified.

Using the position option, vertices are created at the closest location along the curve to each of the specified position.
Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n is the number of positions specified.

193

CUBIT 11.0 User Documentation

If the node option is used, meshed curves may be partitioned. The specified nodes must lie on the curve to be partitioned.
The curve is split at each node specified, and any other mesh entities are divided appropriately amongst the curve
partitions.

Partitioned Surfaces

There are several forms of the command to partition a surface. A surface may be partitioned using hard points, curves,
polylines, mesh edges, mesh faces or mesh triangles.

Partitioning with Vertices or Nodes
Partitioning with Curves

Partitioning with Mesh Edges

Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points

There are two methods of partitioning a surface using vertices and nodes. The first method is to create a set of hard
points using nodes, vertices, or coordinates that constrain the mesh to particular points on the surface. The syntax is:

Partition create surface <id> vertex <id_list> [individual]

Partition create surface <id> node <id_list> [individual]

Partitioning with Polylines

The second method is to define a polyline using a set of vertices or coordinates. This method splits the surface using a
polyline defined by the a list of positions specified as either coordinate triples, or existing vertices. The polyline is
projected to the surface to define the curve for splitting the surface. If only one position is specified a zero-length curve
with a single vertex will be created The syntax is identical to above WITHOUT the individual option.

Partition create surface <id> vertex <id_list>
Partition create surface <id> position <x> <y> <z> [[Position] <x> <y> <z> ...]

In the following simple example, the surface is partitioned using both methods. On the left half of the object, the surface is
partitioned using the individual option (vertices 11 12 15 13). On the right half, a polyline is used (vertices 9 10 16 14). All
of the free vertices can then be deleted, leaving the virtual curves shown in the second picture. Vertices 19 20 21 and 22
are all zero-length curves. The small 'v' in parentheses is to indicate that it is virtual geometry. The resulting mesh is
shown in the third picture. Notice that the polyline constrains the entire curve to the mesh, while the hardpoints constrain
only that individual point.

194

CUBIT 11.0 User Documentation

Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves

This form of the command splits the existing surface into several surfaces by creating curves that approximate the
projection of the specified existing curves onto the surface. The syntax is:

Partition create surface <id> curve <id_list>

Partitioning with Mesh Edges

Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must be owned by the surface to be
partitioned. The shape of the curve(s) used to split the surface is specified by a set of mesh edges.

If the split location is specified by a series of mesh edges, and the specified mesh edges form a closed loop, the node
option may be used to control which node the vertex is created at.

Partition create surface <id> edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles

Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The boundary of the list will
automatically be detected and new curves and vertices created at the appropriate locations. Curves are created from the
mesh edges and used to split the surface. The surface mesh is split and assigned to the appropriate surface partitions.

Partition create surface <id> face|tri <id_list>

Partitioned Volumes

To partition a volume by giving a center and radius:

Partition create volume <id> center [Location] {options} radius <val>
This command splits the existing volume into two volumes. All volume elements that lie within the specified radius of the
specified center location are identified, and the exterior faces of these elements are used to create a surface and partition
the volume. The center can be specified with any of the location options.
Figure 1 shows an example of a partitioned volume. A cube that has been map meshed is partitioned using a center at

one of its vertices. The result is two distinct volumes with a surface separating the two. The interface surface is composed
of the faces of the interior hex elements.

195

CUBIT 11.0 User Documentation

Figure 1. A partitioned volume

This command may be useful for separating small regions of a meshed volume so that remeshing or mesh improvement
may be performed locally.

Using Mesh Intersections to Partition Surfaces

To assist in various mesh editing tasks such as joining, a mesh-based imprinting capability is provided. The command
Imprint Mesh {Body | Volume} <id_list>
determines imprint locations using the mesh on the surfaces of the specified bodies or volumes. Regions of coincidence

between the surfaces is determined by searching for coincident nodes in the mesh of the surfaces. Virtual geometry is
then used to partition the surfaces and curves at the boundary of these regions of coincident mesh.

The imprint mesh functionality differs from a normal geometric imprint in the following ways:

The location of the imprint is determined from coincidence of mesh nodes.
The mesh remains intact through the imprint operation.
Virtual geometry is used to create the imprint.

The imprinting can be done on all types of geometry (including mesh-based geometry, merged geometry, and
virtual geometry.)

The following is a trivial example of this capability. The following commands create two meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 1 2size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

196

CUBIT 11.0 User Documentation

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the imprint operation.
The mesh of the blocks can be joined by first doing a mesh-based imprint and then merging:

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the interface between the two meshed
volumes. The nodes on the new surface are shared by the neighboring hexahedra of both volumes.

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

Removing Partitions

There are two commands used to remove partitions:

Partition merge {curve|surface|volume} <id_list>
The command combines existing partitions where possible. This command is similar to the composite create command.
The difference is that this command is special-cased for partitions, and will result in more efficient geometric evaluations.

If all the partitions of a real solid model entity are merged, such that there is only one partition remaining, the virtual
geometry will be removed, and the original solid model geometry will be restored to the model.

197

CUBIT 11.0 User Documentation

The CUBIT delete command can also be used for removing partitions. See Deleting Virtual Geometry for a description of
its use.

Collapse Geometry

The collapse geometry commands use virtual geometry to tweak small angles and curves to improve meshability of
geometry models. The following options for collapsing geometry are available:

(] Collapse Angle
e Collapse Curve

e Collapse Surface

Collapse Angle

The collapse command allows the user to collapse small angles using virtual geometry. The command syntax is:

Collapse angle at vertex <id> curve <id1> [arc_lengthl <length>] curve <id2> [arc_length2
<length> | same_size | perpendicular | tangent] [composite_vertex <angle>] [preview]

The collapse angle command is used to eliminate small angles at vertices, where curves meet at a tangential point. The
command will split each curve at a specified distance (81 and 62) as shown in Figure 1, and create two new vertices
along those curves. The remaining small angle will be composited into its neighboring surface using virtual geometry. The
options of the command allow you to specify where to split each curve. You must input a distance for the first curve (81),
but the second location can be determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax

The arclength option will split each curve at a specified distance 81 and 82, (See Figure 1) measured from the vertex.
You must input at least one arclength for each of the options listed below.

The same_size option will split curve 2 so that the two resulting curves, 81 and 62, are the same length as shown in
Figure 2.

Figure 2. Collapse angle using the same_size option

198

CUBIT 11.0 User Documentation

The perpendicular option will split curve 2 so it is perpendicular to the split location on curve 1, as shown in Figure 3.

Figure 3. Collapse angle using the perpendicular option

The tangent option will split curve 2 where a line tangent to curve 1 at the split location intersects curve 2, as shown in
Figure 4.

Figure 4. Collapse angle using the tangent option

The composite_vertex option automatically composites resulting surfaces if there are only two curves left at the vertex,
and the angle is less than a specified tolerance.

The preview option will preview composited surface before applying changes.

199

CUBIT 11.0 User Documentation

Figure 5. An example of a meshed surface that is generated after using the collapse angle command.

Collapse Curve

The collapse curve command allows the user to collapse small curves using virtual geometry. It is intended to be used in
cases where removing a small curve to simplify topology will facilitate meshing. The operation can be thought of as
reconnecting curves from one vertex on the small curve to the other vertex. If the user doesn’t specify which vertex to
keep during the operation CUBIT will choose one of the vertices. The operation is performed using virtual partitions and
composites on the curves and surfaces surrounding the small curve. The command syntax is:

Collapse curve <id> [vertex <id>] [ignore] [real_split]

The vertex keyword allows the user to specify which vertex on the small curve to keep during the operation or in other
words which vertex to "collapse to". Depending on the surrounding topological configuration some vertices cannot
currently be chosen so if the user specifies a vertex to collapse to that results in a complex topological configuration that
CUBIT can’t currently handle the user will be notified and encouraged to pick a different vertex. If the user doesn’t specify
a vertex CUBIT will attempt to choose the “best” vertex to keep based on surrounding topology and geometry. Currently,
the collapse curve command only handles curves where the vertex that is NOT retained has a valency of 3 or 4.

The ignore keyword allows the user to specify whether or not small portions of surfaces that are partitioned off of one
surface and composited with a neighboring surface during the collapse curve operation are considered when evaluating
the new composite surface. By specifying the ignore option the user tells CUBIT that these small surfaces will be ignored
in future evaluations of the composite surface. This can be beneficial in cases where the small surface makes a sharp
angle with the neighboring surface it is being composited with. These first derivative discontinuities of composite surfaces
can make it difficult for the meshing algorithms to proceed and ignoring the small surfaces during evaluation can help
remedy this problem. By default the small surfaces will not be ignored.

The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface functionality to do the splitting
rather than using virtual partitioning. The result is that you only have virtual composites at the end and no virtual partitions.
The main advantage of using this option is that the solid modeling kernel's split operation is often more reliable than the
virtual partition.

Figure 1 shows a typical example where the collapse curve command should be used to simplify the topology for
meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

200

CUBIT 11.0 User Documentation

Figure 2. Above example after collapsing the small curve.

Collapse Surface

The collapse surface command allows the user to remove surface boundaries from the model. This is accomplished by
splitting the surface at the given locations and combining it into two adjacent surfaces using virtual geometry operations.
The command syntax is:

Collapse Surface <id> Across Locations With Surface <id_list> [Preview]

The locations option can use any of the general Cubit location commands. However, the vertex and curve options are
among the most useful location options. For example, the command

collapse surface 15 across vertex 128 curve 40 with surface 26 117

would split surface 15 by the line that is formed between vertex 128 and the midpoint of curve 40. It would then composite
the two parts of surface 15 that are adjacent to surfaces 26 and 117. The result is that three surfaces have been reduced
to two.

The collapse surface command is most useful in removing blended surfaces (i.e. fillets and chamfers) from a model. For
example, Figure 1 below shows a set of highlighted surfaces on a bracket. By collapsing all these surfaces the model
shown in Figure 2 is created. Collapsing the surfaces for this model simplifies the model and allows for the creation of a
higher quality mesh.

201

CUBIT 11.0 User Documentation

T

mr—

|
|
|

R
5 o

0 s
o

Figure 1. Bracket with chamfered edges.

Figure 2. Bracket after highlighted edges have been collapsed

Simplify Geometry

Simplifying topology by compositing individually selected surfaces is often a tedious and time-consuming task. The
Simplify command addresses the tedium by automatically compositing surfaces based on selected criteria between
neighboring surfaces. Figure 1 shows a typically example of Simplify command usage (‘Simplify volume 1 angle 15’).

202

CUBIT 11.0 User Documentation

Figure 1. Typical Simplify command usage

The command syntax and discussion items are shown below.

Simplify {Volume|Surface} <Range> [Angle < value >] [Respect {Surface <id range >| Curve <
id range > | Imprint | Fillet}] [Preview]

The preview option shows what curves are respected without compositing any surfaces. It should also be pointed out that
multiple respect specifications can be chained together. For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect fillet preview

Feature Angle

Feature angle is defined as the angle between the average facet normals of two neighboring surfaces. If the angle is less
than the specified angle then the two surfaces are composited together (assuming any other specified criteria are met).
Feature angle is always used as criteria and if an angle is not specified the value is set to 15 degrees.

203

CUBIT 11.0 User Documentation

Respecting Curves and Surfaces

Surfaces and curves can be specified to prevent geometry features from automatically being composited. Figure 2 show
an example of respecting a surface (‘simplify vol 1 angle 15 respect surf 289’).

\J

Figure 2 Respecting a surface

For complex geometries, it is often useful to preview the simplify command and then add any respected geometry to the
command respect lists.

Respecting Imprints

Curves created by imprints can automatically be respected by the simplify command. Figure 3 shows an example of
geometry with split fillets.

N7

Figure 3 Respecting imprint geometry

Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle 40 respect imprint’).

Deleting Virtual Geometry

Removing Virtual Geometry

The following command removes all lower-order virtual geometry from the specified entities.
virtual remove <entity_list>

Examples:

virtual remove surface 5

204

CUBIT 11.0 User Documentation

Removes all composite and partition curves from surface 5.
virtual remove body all
Remove all virtual geometry from all bodies.
For removing individual virtual entities, see the sections of the documentation for each type of virtual entity:

Composite curves

Composite surfaces
Partition curves

Partition surfaces

Using The Delete Command With Composites

If the general delete command is invoked for a composite surface, the composite surface will be removed, and the
original surfaces used to define the composite will be restored to the model. The defining surfaces are NOT also deleted.
As with any other non-virtual surfaces, the delete command will fail if the composite has a parent volume.

To delete composite surfaces with a parent volume, the composite delete command can be used. The behavior is
analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, or on a surface containing a
composite curve, the entire volume or surface will be deleted, including the original entities used to define the composite,
as those entities are also children of the entity being deleted.

Using the Delete Command With Partitions

It is recommended that the delete command not be used with partitions, as it may break subsequent usage of the merge
and delete forms of the partition command for other partitions of the same real geometry entity. However, if the delete
command is used for partitions, the behavior is to delete the specified partition, and when the last partition of the real
geometry is deleted, to restore the original geometry.

The delete command can also be used on parents of partitions. For example, a volume containing partitioned surfaces, or
a surface containing partitioned curves can be deleted. In this case, the specified entity will be deleted along with all of its
children, including the partition entities, and the original entities that were partitioned.

Geometry Orientation

The orientation of surface and curve geometry is the direction of the normal and tangent vectors respectively.

Each surface has a forward (or top) side. The evaluation of the surface normal at any point on the surface will return a
vector at that point, orthogonal to the surface and directed towards the forward side of the surface. The mesh faces
generated on each surface will have the same normal direction as their owning surface.

Each curve has a forward direction and a corresponding start and end vertex. The direction of the curve is from start to
end vertex. The evaluation of the tangent vector of the curve at any point along the curve will result in a vector that is both
tangent to the curve and pointing in the forward direction of the curve (towards the end vertex along the path of the curve.)
The mesh edges created on each curve will be oriented in the same direction as their owning curve. The exported nodes
and edges of a curve mesh will be written in the order they occur along the path of the curve.

Higher-dimension geometry has uses lower-dimension geometry with an associated sense (forward or reversed) for each
lower-dimension entity. For example, a volume as a sense for each surface used to bound the volume. If the surface
normal points outside the volume, then the volume uses the surface with a forward sense. If the surface normal points into
the interior of the volume, the volume uses the surface with a reversed sense. Similarly a surface is bounded by a set of
curves forming a loop such that the direction of the loop and the sense of each curve results in a cycle that is counter-
clockwise around the surface normal.

205

CUBIT 11.0 User Documentation

Adjusting Orientation

By default, a surface is oriented so that its normal points OUT of the volume of which it is a part. For a merged surface (a
surface which belongs to more than one volume) or a free surface (a surface that belongs to no volume, also known as a
sheet body), the orientation of the surface is arbitrary. The orientation of a surface influences the orientation of any
elements created on that surface. All surface elements have the same orientation as the surface on which they are
created. The following commands are available to adjust the normal-direction for a surface:

Surface <id_range> Normal Opposite

Surface <id_range> Normal Volume <id>

The orientation of a surface can be flipped from its current orientation by using the "Opposite" keyword. The orientation of
a merged surface can be set to point OUT of a specific volume by specifying that volume in the "Volume" keyword.

Occasionally, volumes will be created "inside-out". The command:
Reverse {Body|Volume} <body_id_range>

will turn a give volume or body inside out. This should be equivalent to reversing the normals on all the surfaces. This
shouldn't be encountered very often, as it is a very rare condition.

The following commands are available to adjust the tangent direction of a curve:

Curve <id_range> Tangent Opposite

Curve <id_range> Tangent {Forward|Reverse} Surface <id>

Curve <id_range> Tangent {Start|End} Vertex <id>
The first command reverses the tangent direction of the curve. The second command sets the tangent direction such that
it is used by a specific surface with a specified sense. The third command sets the tangent direction of the curve such that

the curve starts or ends with the specified vertex. For the latter two forms of the command, the curve must be adjacent to
the specified surface or vertex.

Geometry Groups

Groups provide a powerful capability for performing operations on multiple geometric entities with minimal input. They can
also serve as a means for sorting geometric entities according to various criteria. The following describes the Group
operations available in CUBIT:

When a group is meshed, CUBIT will automatically perform an interval matching on all surfaces in the group (including
surfaces that are a part of volumes or bodies in the group).

Basic Group Operations

Groups in Graphics
Propagated Hex Groups

Quality Groups

There are several utilities in CUBIT which use groups as a means of visualizing output. These utilities are described
elsewhere, but listed here for reference:

Webcut results

Merged and unmerged entities
Sweep groups

Interval matching

206

CUBIT 11.0 User Documentation

Basic Group Operations

Geometry Groups

The command syntax to create or modify a group is:

Group ["name" | <id>] add <list of topology entities>
For example, the command,

Group "Exterior" add surface 1to 2, curve 3to 5
will create the group named Exterior consisting of the listed topological entities. Any of the commands that can be applied
to the "regular” topological entities can also be applied to groups. For example, mesh Exterior , list Exterior , or draw
Exterior . A topological entity can be removed from a group using the command:

Group ["name" | <id>] remove <entity list>

The Xor operation can also be performed on entities in group. Xor means if an entity is already in the group, the command
will delete this entity from the group. If it is not in the group, the entity is then added to the group.

Group ["name" | <id>] xor <entity list>

Group Booleans

Groups may also be created from existing groups by using boolean operations. Each of these commands will create a
new group that contains entities from two existing groups. The intersect command will create a new group that contains
elements common to both existing groups. The unite command will contain entities that exist in either group. The
subtract command will remove entities that are common to both groups and create a new group from entities that exist in
exactly one of the groups.

Group {<'name'>|<id>} intersect group <id> with group <id>

Group {<'name'>|<id>} unite group <id> with group <id>

Group {<'name'>|<id>} subtract group <id> from group <id>

Mesh Groups

Groups may also contain mesh entities. The commands for adding and removing mesh entities are analogous to those for
geometric entities.

Group ["name" | <id>] add {hex|face|edge|node <id_list>}
Group ["name" | <id>] remove {hex|face|edge|node <id_list>}

Group ["name" | <id>] xor {hex|face|edge|node <id_list>}

Deleting Groups

Groups can be deleted with the following command:
Delete Group <id range> [propagate]

The option propagate will delete the group specified and all of its contained groups recursively.

Cleaning Out Groups

You can remove all of the entities in a group via the cleanout command:

Group <group_id_range> Cleanout [geometry|mesh] [propagate]

207

CUBIT 11.0 User Documentation

By default all entities will be removed - optionally you can cleanout just geometry or mesh entities. As in delete, the
propagate option will cleanout the group specified and all of its contained groups recursively.

Groups in Graphics

In the GUI version of CUBIT, groups may be picked with the mouse.

When displaying a group containing hexes, only the outside skin of the hexes will be displayed.

Propagated Hex Groups

Grouping propagated hexes is a mechanism for selecting groups of
hexes from a hex mesh using sweep-type criteria. For example,
creating a group containing all hexes between two specified mesh
faces.

(] Starting on a Face
e Starting on a Surface

. Naming Convention

Note: the examples above are based on first executing these commands:
brick width 10
volume 1size 1

mesh volume 1

Propagated Hex Group Starting on a Face

When starting on a face, the propagation method can end at a surface, end at a face or can end after the number of times
the user specifies:

Ending at a Surface

Ending at a Face
Number of Times

Ending at a Surface with Multiple
Ending at a Face with Multiple
Number of Times with Multiple
Ending at a Face with Direction
Ending at a Surface with Direction
Number of Times with Direction

Ending at a Surface

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id range> Target Surface <id>
Example
group 2 add hex propagate face 1 11 21 target surface 2

Result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a Face

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Face <id>

208

CUBIT 11.0 User Documentation

Example
group 2 add hex propagate face 1 target face 1721
Result: Group 2 will be created containing 5 propagated hexes (5 layers of 1 hex)

Note: Ending at a face requires starting at one face at one time, but ending at surface allows multiple start faces

Number of Times

Group ['name’ | <id>] Add Hex Propagate [Source] Face <id range> Times <number>
Example
group 2 add hex propagate face 2 times 4

Result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

All of these methods, ending at surface, end at a face or number of times, can be used with the "multiple” option which will
create a grandparent (top-level), parent (mid-level, contained within the grandparent) and child (bottom level, contained
within the parent) groups. The child groups will contain each hex layer (specified number of layers per child group), all
organized into a single parent group, which is organized underneath the group ID given to the command. Subsequent
propagation commands could then be executed adding to the grandparent group, but creating a new parent and child
groups. This way multiple propagation "sets" can be stored in one grandparent group, if desired.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Surface <id> Multiple
<number>

Example

group 2 add hex propagate face 1 target surface 2 multiple 1
Result: Ten groups will be created and stored with their respective ids, one for each layer of hexes. These groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2. A subsequent

propagation command could be executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Ending at a Face with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Surface <id> Multiple
<number>

Example

group 2 add hex propagate face 1 target face 1721 multiple 1
Result: 5 groups will be created and stored with their respective ids, one for each layer of hexes. These groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2. A subsequent

propagation command could be executed adding to group 2 (the grandparent), which would create a single group
contained in group 2 (the parent), containing the hex layer groups (the children).

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times <number> Multiple
<number>

Example

group 2 add hex propagate face 1 times 10 multiple

209

CUBIT 11.0 User Documentation

Result: Two groups will be created and stored with their respective ids, these two groups will be stored in the parent
group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

If the end surface or end face is ambiguous, a node direction can be specified to direct the propagation. When specify the
node direction, the node has to be picked such that when the hexes are propagated, the picked node lies in these
propagated hexes. If that node is never reached while propagating, the direction is not found and zero hexes will be
included in the specified group.

Ending at Face with Direction

Group ['name' | <id>] Add Hex Propagate [source] Face <id> Target Face <id> Direction Node
<id>

Example
group 2 add hex propagate face 1721 target face 1 direction node334

Result:group 2 will be created containing 6 hexes

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target Surface <id>
Direction Node <id>

Example
group 2 add hex propagate face 1 target surface 2 direction node 334
Result: group 2 will be created containing 10 hexes

Note: The direction command and the multiple command can be used together (i.e. group 2 add propagate face 1721 end
face 1 multiple 2 direction node 334)

If number of times is specified and the direction is ambiguous, a surface direction or a node direction can be specified to
direct the propagation. The node direction has the same condition as when ending at a surface or face and that is it must
lie in the propagated hexes.

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times <number>Direction
[surface <id> | node <id>]

Example
group 2 add hex propagate face 110 times 4 direction surface 2
group 2 add hex propagate face 1 times 4 direction node 269
Result: group 2 will be created contained 4 hexes

Note: The direction command and the multiple command can be used together. (i.e. group 2 add propagate face 1721
times 4 multiple 2 direction surface 1)

Propagated Hex Group Starting on a Surface

Starting on a surface can end at a surface or can end after the number of times the user specifies.

(] Ending at a Surface
(] Number of Times

210

CUBIT 11.0 User Documentation

Ending at a Surface with Multiple
Number of Times with Multiple
Ending at a Surface with Direction
Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>
Example
group 2 add hex propagate surface 1 target surface

Result: Group 2 will be created containing 1000 hexes

Number of Times

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number>
Example

group 2 add hex propagate surface 1 times 4
Result: Group 2 will be created containing 400 hexes

Both methods, ending at surface or number of times, can be used with the "multiple” option which will create several
groups depending upon the multiple number specified.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id> Multiple <number>
Example

group 2 add hex propagate surface 1 target surface 2 multiple 2

Result: Five groups will be created and stored with their respective ids of multiple 2, these groups will be stored in the
parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

Number of Times with Multiple

Group ['name’ | <id>] Add Hex Propagate Surface <id> Times <number> Multiple <number>
Example
group 2 add hex propagate surface 1 times 10 multiple 5

Result: Two groups will be created and stored with their respective ids of multiple 5, these two groups will be stored in the
parent group, Group 3, and Group 3 will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node direction can be specified
to direct the propagation. If the end surface is specified, only a node direction can be specified to direct the propagation.
When specifying the node direction, the node has to be picked such that when the hexes are propagated, the picked node
lies in these propagated hexes. If that node is never reached while propagating, the direction is not found and zero hexes
will be included in the specified group.

Note: for the examples below, the result can be seen by executing these commands:

211

CUBIT 11.0 User Documentation

brick x 10

vol 1size 1
brick width 10
body 2 move 10
volume all size 1
merge all

mesh volume all

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number> Direction Node <id>
Example

group 2 add hex propagate surface 6 target surface 12 direction node 1530
Result: Group 2 will be created containing 400 hexes

Note: The direction command and the multiple command can be combined (i.e. group 2 add propagate surface 6 times 4
multiple 2 direction node 1530)

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number> Direction [surface
<id> | node <id>]

Example
group 2 add hex propagate surface 6 times 4 direction surface 4
group 2 add hex propagate surface 6 times 4 direction node 1530

Result: group 2 will be created containing 400 hexes

Naming Convention for Propagated Hex Groups

A special naming convention can be used for the propagated groups, best described by an example.
The following command will create a hierarchy of logically named groups, as follows.
group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:
w1
W1P1
W1P1T1
W1P1T2

WI1P1T3

W1P1T10
Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.
The software simply looks for numerical numbers in the group name and parses out the correct grandparent, parent and
child names from the substrings. There must be exactly 3 substrings in the group name, each ending with an integer for

the command to work properly.

A subsequent command:

212

CUBIT 11.0 User Documentation

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:
W1
W1P1
WI1P1T1
WI1P1T2

W1P1T3

W1P1T10
W1P2

W1P2T1

W1P2T2

W1P2T3

W1P2T10

Quality Groups

Groups can also be formed from the hexes or faces obtained from the quality command. Each group formed using quality

can be drawn with its associated quality characteristics {i.e. jacobian low .2 high .3} automatically.

Group {<'name'>|id} {add|equals|remove|xor} Quality { Hex | Tet | Face | Tri | Volume | Surface |
Group } <id_range> { guality metric name (default is SHAPE) } [High <value>] [Low <value>]
[Top <number>] [Bottom <number>]

The following example illustrates the use of quality groups:
group 2 add quality volume 1 jacobian

In this case, if the meshed brick from the section Propagated Hex Groups is used, Group 2 will be created and it will
contain 1000 hexes with quality characteristics.

The quality metric names can be found in the Quality Assessment section of the documentation.

Geometry Attributes

Each geometric topological entity has specific information attached to it. These attributes specify aspects of the entity
such as the color that entity is drawn in and the meshing scheme to be used when meshing that entity. This section
describes those geometry attributes that are not described elsewhere in this manual.

. Entity Names

(] Entity IDs
. Persistent Attributes

213

CUBIT 11.0 User Documentation

Entity Names

By default, geometric entities in CUBIT are referenced using an entity type (e.g. Surface, Volume) and an id, for example
"draw surface 1". However, geometric entities can also be assigned names, to simplify working with specific entities.
Once a name is assigned to an entity, that name can be used in any CUBIT command in place of the entity type and
number. For example, if surface 1 were named 'mysurfl’, the command above would be equivalent to "draw mysurfl".
Also, since entity names are saved with the geometry, this also provides a means for persistent identifiers for geometric
entities. The following command assigns names to geometric entities in CUBIT:

{Group|Body|Volume|Surface|Curve|Vertex} Name “<entity_name>'
The name of each topological entity appears in the output of the List command. In addition, topological entities can be
labeled with their names (see label command). A list of all names currently assigned and their corresponding entity type
and id (optionally filtered by entity type) can be obtained with the command

List Names [{Group|Body|Volume|Surface|Curve|Vertex|All}]
Notes:

e In a merge operation, the surviving entity is given the name(s) of the deleted entity.
® A geometric entity may have multiple names, but a particular name may only refer to a single entity.

Valid and Invalid Names

Although any string may be used as an entity name, only valid names may be used directly in commands. A name is valid
if it begins with a letter or underscore ("_"), followed by any combination of zero or more letters, digits, or the characters
"t or '@ If an attempt is made to assign an invalid name to an entity, CUBIT will generate a valid version of the
invalid name by replacing invalid characters with an underscore. Then both the valid and invalid versions of the name are
assigned to the entity. For example, assigning the name "123#" to a volume will result in the volume having two names,
"123#"and "_23 ". The valid name can be used directly in commands (mesh _23_), while the invalid name can only be
referenced using a longer, less direct syntax (mesh volume with name "123#").

Reconciling Duplicate Names

When an attempt is made to assign the same name to two different entities, a suffix is added to the name of the second

entity to make it unique. The suffix consists of the "@" character followed by one or more letters or numbers. For example,

the following commands will result in volumes 1 to 3 having the names "hinge", "hinge@A", and "hinge@B", respectively:
volume 1 name "hinge"

volume 2 name "hinge"
volume 3 name "hinge"

Automatic Name Creation

CUBIT provides an option for automatically assigning names to entities upon entity creation. This option is controlled with
the command:

set default names {on|off}

When this option is on, entities are assigned default names consisting of a geometry type concatenated with the entity id,
for example ‘"curl’, 'surf26', or 'vol62'.

Automatic Name Propagation

CUBIT automatically propagates names through webcuts. If an entity that has been assigned the name "Gear" is split
through webcuts, the resulting bodies are named "Gear" and "Gear@A". Try the following example.

214

CUBIT 11.0 User Documentation

br x 10

volume 1 name "Cube"
webcut volume 1 xplane
webcut volume 1 2 yplane
webcut volume 1 2 3 4 zplane
label volume name

Figure 1. Name Propagation through Webcuts

Naming Merged Entities

When entities that have the same base name, such as "platform” and "platform@A", are merged, the resulting entities is
assigned both names. The set merge base names on command tells Cubit that in this situation, it should merge the
names too. The command syntax is:

Set merge base names [on|OFF]

For example:
brick x 10
vol 1 copy move 10
surf 6 name 'platform’
surf 10 name 'platform’
Surface 10 actually is named platform@A, since we don't want duplicate names

merge all
list surf 6

You see that surface 6 has both 'platform' and ‘platform@A' as hames. Now, for the contrasting example

215

CUBIT 11.0 User Documentation

brick x 10

vol 1 copy move 10

surf 6 name 'platform’
surf 10 name 'platform’
set merge base names on
merge all

list surf 6

You see that surface 6 has only 'platform' as its name.

Entity IDs

Topological entities (including groups) are assigned integer identification numbers or ids in CUBIT in ascending order,
starting with 1 (one). Each new entity created within CUBIT receives a unique id within the topological entity type. This id
can be used for specifying the entity in CUBIT commands, for example "draw volume 3".

Gaps in ID space

After working with a geometry model for some time, various operations will cause gaps to be left in the numbering of the
geometric entities. The compress ids command can be used to eliminate these gaps:

Compress [ids] [all] [group | body | volume | surface | curve | vertex | hex | face | edge | node]
[retainmax] [sort]

Typing compress with no options or compress all will compress the ids of all entities; otherwise, the entity type for which
ids should be compressed can be specified.The retainmax argument will retain the maximum id for each entity type, so
that entities created subsequent to this command will receive ids greater than that value. If the Sort qualifier is included,
the new id of each entity will be determined by its size and location. Small entities are given a lower id than large entities.
Entities that are the same size are sorted by their location, with lower X, y, and z coordinates leading to a lower id. If two
entities are found to have the same size and location, they are sorted according to their previous ids. This option can be
used to restore ids in translated models in a manner which leads to more persistence than purely random id assignment.

Renumbering IDs

The renumber command can be used to change the id numbers assigned to meshed entities.
Renumber {Node|Edge|Tri|Face|Hex|Tet} <id_range> start_id <id>

Any valid range specification can be used to specify the source ids. There is no requirement that the ids being
renumbered are consecutively numbered. The new id numbers will be consecutive beginning at the specified start id. For
the command to be successful there can be no existing ids within the effective range of the start id. If the resultant
destination range is not free of id numbers, the command will fail with an appropriate error.

Persistent Attributes

Typical data assigned to topological entities during a meshing session might include intervals, mesh schemes, group
assignments, etc. By default, most of this data is lost between CUBIT sessions, and must be restored using the original
CUBIT commands. Using CUBIT's persistent attributes capability, some of this data can be saved with the solid model
and restored automatically when the model is imported into CUBIT.

Attribute Behavior
Attribute Types
Attribute Commands
Using CUBIT Attributes

216

CUBIT 11.0 User Documentation

Attribute Behavior

In this context, attributes are defined as data associated directly with a particular geometry entity. In CUBIT's
implementation of attributes, these data can occupy one of three "states" at any given time: they can be stored in data
fields on CUBIT's geometry entities; they can be stored in an intermediate representation, using CUBIT's attribute objects;
or they can exist only on the ACIS objects. When they are stored on ACIS objects, those attributes are written to and read
from disk files with the geometry. This mechanism allows CUBIT-specific information to be stored and retrieved with the
geometry data. By default, attribute data is not stored with geometry. To enable the use of attributes, use the commands
described in the following sections.

Attribute Types

The attribute types currently implemented in CUBIT are shown below.

Attribute Types Description

Color Entity Color

Composite vg Used to restore composite virtual topology

Genesis entity Membership in boundary conditions (block, sideset, nodeset)
Id Entity Id

Mesh container Handle to mesh defined for the owner

Mesh scheme Meshing scheme (e.g. paving, sweeping, etc.)

Name Entity name

Partition vg Used to restore partition virtual topology

Smooth scheme Smoothing scheme (e.g. Laplacian, Condition Number)
Unique Id Unique entity id, used to cross-reference other entities
Vertex type Used to define mesh topology at vertex for mapping/submapping
Virtual vg Used to store virtual geometry entity(ies) defined on an entity

Attribute Commands

Most non-CUBIT-developer uses of attributes will be to use all or none of the attributes. Therefore, the most common
command to enable and disable the use of attributes is:

Set Attribute {on | off}

When this option is on, all defined attributes will be saved with the geometry when the user enters the Export Acis
command.

When a geometry is imported into CUBIT, any attributes defined on that geometry and recognized as CUBIT attributes are
imported and put into an intermediate representation (that is, this information is not assigned directly to the geometry
entities). To find out which attributes are defined on a given set of entities, use the following command:

List [<entity_list>] Attributes [Type <attribute type>] [All] [Print]

If no entities are entered, attribute information for all the geometric entities defined in CUBIT is printed.

217

CUBIT 11.0 User Documentation

The Type option can be used to list information about a specific attribute type; values for are the same as those in the
previous table.

If the All option is entered, information about all attribute types will be printed, even if there are none of those attributes
defined for the specified entities.

If the Print option is entered, the information stored in each attribute will be printed; this command is usually used only by
CUBIT developers.

Control By Attribute Type or Geometric Entity

Attributes can be enabled or disabled by attribute type, to allow the use of only user-specified attribute types. To turn on
or off specific attributes, use the command:

Set Attribute <attribute type> {on | off}
where <attribute type> is one of the types shown in the previous table.

Attributes can also be controlled to automatically write (update) and read (actuate) to/from solid model files automatically,
using the command:

Set Attribute <attribute_type> Auto {Actuate | Update} {on | off}

Finally, attributes can be manually written to and read from the geometric entities, and removed from cubit entities, using
the command

{geom_list} Attribute {all | attribute_type} {actuate | remove | update | read | write}

where geom_list is a list of geometry entities. This command is recommended only for developers' use.

Using CUBIT Attributes

A typical scenario for using CUBIT attributes would be as follows.
Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT session)
Enable automatic use of attributes using the command:
Set Attribute On
Export acis file (see Export Acis command).
Subsequent runs:
Enable automatic reading and actuating of attributes:
set attribute on
Import ACIS file (see Import Acis command)

Used in this manner, geometry attributes allow the user to store some data directly with the geometry, and have that data
be assigned to the corresponding CUBIT objects without entering any additional commands.

Geometry Deletion

Geometry can be deleted from the model using the following command:
Delete [Body | Surface | Curve | Vertex] <id_range>

Any type of Body can be deleted, whether it is based on solid model geometry or another representation. Other entities
(Surface, Curve, Vertex) can be deleted when they are "free", i.e. when they are not contained in an entity of higher
topological order (Body, Surface or Curve, respectively); this type of geometry is often created from the lowest order

topology up.

218

CUBIT 11.0 User Documentation

Parts, Assemblies, and Metadata

Overview of Parts, Assemblies and Metadata

A geometric model may be organized into a hierarchy of assemblies, sub-assemblies, and parts. These parts and
assemblies can be assigned certain attribute values. The parts, assemblies, and associated attributes are referred to as
DART Metadata, or simply metadata. Metadata can be imported from files, or can be created within CUBIT. Metadata can
be exported to both mesh and geometry files.

Although useful in its own right, the primary purpose of CUBIT’s metadata capabilities is to enable interoperability with the
set of applications participating in the DART project (see the DART project's Analyst Home Page at http://www-
irn.sandia.gov/analyst). DART interoperability enables CUBIT to preserve assembly relationships and material data
through the analysis process.

This section describes the procedures for importing, manipulating and exporting metadata within CUBIT.

e Working with Parts and Assemblies
. Metadata Attributes
. Importing and Exporting Metadata

Working With Parts and Assemblies

Volumes can be organized into a hierarchical tree of parts, assemblies, and sub-assemblies. Assemblies may contain
parts and other assemblies. Parts, on the other hand, may not contain sub-entities.

Each part and assembly has a name and an optional description. Other attributes may also be assigned, such as a
material specification or a link to an entry in a PDM system. See Metadata Attributes.

The relationship between the geometric model and the assembly is determined by associating parts with volumes. A
single part can be associated with any number of volumes, including zero volumes. A volume, however, can be
associated with only one part.

As volumes are modified, CUBIT automatically maintains the appropriate relationships with parts. If a volume is
associated with a part, and that one volume is split into multiple volumes through a webcut or some other operation, each
of the resulting volumes is automatically associated with the original volume’s part. Copying a volume will also result in the
new volume being associated with the same part as the original volume.

Identifying Parts and Assemblies
Creating Parts and Assemblies

Deleting Parts and Assemblies
Associating Parts with Volumes

Viewing All Assembly Information at Once

Identifying Parts and Assemblies

A part or assembly is identified by its assembly path. An assembly path is much like a directory path in a file system. It
consists of the name of each ancestor in the assembly tree, separated by a forward slash. For example, a part named
“p1” contained within the top-level assembly “al” would be identified by the path “/al/pl”. If the part “p2” is part of the
assembly “a2”, and “a2” is a sub-assembly of “al”, then “p2” has the path “/al/a2/p2”.

More than one part or assembly may have the same name. To differentiate between parts or assemblies with the same
name and path, each part also has an instance number. If two entities have the same name, they will not have the same
instance number. For example, two parts named “p1” may be “pl instance 1” and “p1 instance 2.

Instance humbers may be incorporated into assembly paths by placing the instance number in angled braces after a part
or assembly name. For example, “pl instance 3” is identified in a path as “p1<3>". Other examples of instance numbers in
assembly paths include “/al<1>/a2<1>/p1<3>" and “/al/a2<1>/p1”. Assembly paths are always allowed to incorporate
instance numbers, but are only required to include as many instance numbers as it takes to avoid ambiguity. Note that
some commands do accept ambiguous paths, selecting a random entity which matches the path.

219

CUBIT 11.0 User Documentation

Most commands which accept assembly paths also allow the path to be followed by an “instance” command option (for
example, metadata list part “/al/pl” instance 3). The instance option always refers to the instance number of the last item
in the path (p1 in the example).

Creating Parts and Assemblies

Parts and assemblies can be created using the following commands:
Metadata Create {Assembly|Part} “<absolute_path>" [Instance <instance>]

If the instance option is not included, CUBIT will assign an appropriate instance number to the new entity. If the instance
option IS included, an entity with the specified name and instance number must not already exist or the command will fail.

Note that the path must be absolute, identifying each ancestor of the new entity. Any ancestors of the new entity which do
not already exist are automatically created.

Deleting Parts and Assemblies

To delete a part or an assembly, use the Metadata Remove command:
Metadata Remove {Part|Assembly} “<path>"

This will remove the specified part or assembly. Assemblies can only be removed if they have no contents. All contained
parts and subassemblies must be removed before removing the parent assembly.

It is also possible to remove all parts and assemblies that have no association with geometric volumes in the model:
Metadata Clean
This can be extremely useful when importing geometry which has been simplified with metadata which has not been

simplified. For example, eMatrix currently writes out the full assembly hierarchy even when exporting a simplified
representation of the geometry.

Associating Parts with Volumes

The relationship between the geometric model and the assembly is determined by associations between parts and
volumes. As stated previously, a part may be associated with any number of volumes, while a volume may be associated
with only one part. The easiest way to associate a volume with a part is to use the entity tree in the user interface. Drag a
volume in the tree onto a part in the tree, and the volume and part are now associated. Since a volume can only be
associated with one part at a time, any previous association between that volume and a part is removed.
Part-to-volume associations can be created on the command line using the Metadata Modify Path command:

Metadata Modify Path “<part_path>" Volume <ids>

The specified volume or volumes will be associated with the part specified by part_path. Any volumes already associated
with the specified part will retain their association with the part.

Associations can be removed using the Metadata Remove command:

Metadata Remove Volume <ids>
After the Metadata Remove command has been issued, the specified volumes are no longer associated with any part.
The set of volumes associated with a given part can be modified using the Metadata Replace command:

Metadata Replace Part “<part_path>" Volume <ids>

When the Metadata Replace command is issued, all associations the part may have had with any volumes are removed.
New associations are then created with the specified volume or volumes.

Viewing All Assembly Information at Once

Once an assembly tree is created, all assemblies, parts, and part-to-volume associations can be viewed using the
command:

220

CUBIT 11.0 User Documentation

Metadata List Tree

This will print the names of all parts and assemblies in the output window, along with the IDs of the volumes associated
with each part.

It is also possible to view all parts, their properties, and their volume associations using a spreadsheet application such as
Microsoft Excel. This is done by generating a file using the command:

Export Part_List "<filename>" [OverWrite]

This command writes an XML file in a format that Excel can convert to a spreadsheet. To do this, simply import the XML
file into Excel as an XML List. The data can then be sorted and filtered by any of the parts' properties.

The Export Part_List command is particularly useful for identifying parts which are not correctly associated with parts.
Among the fields that can be filtered is the is-part field. This field is FALSE for each volume that is not associated with a
part. Filtering on this value will show a list of all volumes that are not associated with any part. The volume-ids field will
show the ID of each unassociated volume, and the volume-name field will show each unassociated volume's name, if
any.

It is equally easy to identify parts that are not associated with volumes. Display only those rows with a blank value in the
volume-ids field to see a list of parts that have no associated volume.

Similar methods can be used to identify missing materials information. Fields can also be sorted to group the parts by
material.

Metadata Attributes

Each part and assembly has several attributes, including its name and description. In addition, there are several attributes
which do not describe any particular part or assembly. The “global” attributes describe the assembly tree as a whole, or
the metadata as a whole.

These sections describe how to view and edit metadata attributes.

Part and Assembly Metadata Attributes

Viewing Part and Assembly Metadata Attributes
Modifying Part and Assembly Metadata Attributes
Viewing and Modifying Global Metadata Attributes

Part and Assembly Metadata Attributes

Each part and assembly has several attributes. Some attributes apply to both parts and assemblies, while other attributes
apply to only parts. The attributes are listed in the following table:

Attribute Name Description Applies To:

Part Assembly
Name Name X X
Description Description X X
Instance Instance Number X X
File The name of the file containing the X X

original version of this entity. Often a
reference to a PDM system.

Units The unit system of this part or assembly. X X

Material_Description The name or description of the material X
of which this part is composed.

221

CUBIT 11.0 User Documentation

Material_Specification The formal specification number of the X
material of which this part is composed.

Viewing Part and Assembly Metadata Attribute Values

The easiest way to view a part or assembly’s metadata attribute values is to select the item in the entity tree. The item’s
metadata attributes are listed in the property page.

A part or assembly’s metadata attribute values can also be viewed using the Metadata List command:
Metadata List [<attribute_name>] {Part|Assembly} “<path>”

The attribute_name should be one of the attribute names in the table above. If no attribute name is included in the
command, all metadata attributes are listed.

Metadata attributes can also be listed based on a volume.
Metadata List [<attribute_name>] Volume <id>

This volume-based command works just like the part-based command, but lists the metadata for the part with which the
volume is associated.

Modifying Metadata Attributes

A part or assembly’s metadata attributes can be modified in the property page. Simply select the part or assembly in the
entity tree, then click in the appropriate text field in the property page.

A part or assembly’s metadata attributes can also be modified using the Metadata Modify command:
Metadata Modify <attribute> “new value” {Part|Assembly} “<path>”

where attribute is one of the attributes listed in the table above. The specified attribute value will be changed to
new_value.

There is also a volume-based version of the Metadata Modify command:
Metadata Modify <attribute> “new_value” volume <id>

The volume-based command works just like the part-based command, operating on the part with which the volume is
associated. Note that if the specified volume is not associated with a part, a new part will be created and associated with
the volume.

Viewing and Modifying Global Metadata

There are several attributes which do not describe any particular part or assembly. These “global” attributes describe the
metadata as a whole:

Attribute Name Description
Classification_Level The level of sensitivity of the metadata. Usually one of the following:
e Secret

(] Confidential
(] Unclassified

Classification_Category The classification category. Usually one of the following:

e Not Restricted
® Restricted Data (RD)

222

CUBIT 11.0 User Documentation

e Formerly Restricted Data (FRD)
e National Security Information (NSI)

Weapon_Category Sigma 1 through Sigma 15

Global metadata values can be viewed using the Metadata List command:
Metadata List <attribute_name>

Global metadata values can be modified using the Metadata Modify command:
Metadata Modify <attribute_name> “new_value”

For both commands, attribute_name should be one of the attribute names in the table above.

Importing and Exporting Metadata

Metadata can be imported from and exported to a file. In most cases metadata will be imported and exported with a data
file such as a SAT file or a genesis file. CUBIT is also compatible with DART artifacts, including artifact dependency
tracking.

(] Importing Metadata

. Exporting Metadata
. Importing and Exporting DART Artifacts

Importing Metadata

Parts and assemblies can be created and associated with geometry by importing a DART Metadata file along with a
geometry file, using the XML option of the import command. At this time the only two geometry formats which support
metadata import are STEP and ACIS:

Import {Step|Acis} "<filename>" [XML "<xml_filename>"]

To successfully associate the contents of the geometry file with the parts described in the metadata, the XML file must
follow the DART Metadata 3.0 XML schema found at http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd, and
the geometry file must contain extra DART data. A suitable STEP file and a corresponding metadata file can be exported
from Pro/E using an add-in called eMatrix (a tool under the umbrella of the DART project, see the Analyst Home Page for
details). A SAT file and corresponding metadata file can be obtained by exporting them from CUBIT using the XML option
of the export command.

Exporting Metadata

Some export commands include an XML option. Including this option in the export command instructs CUBIT to write out
a DART metadata file, in addition to the traditional data file. The metadata file includes the data required to enable
interoperability with other DART-compliant applications.

The only geometry export command which supports the XML option is ACIS export:

Export Acis “<acis_filename>” [XML “<xml_filename>"]

When an ACIS file exported with metadata, the specified XML file includes a description of the assembly hierarchy as it
appears in CUBIT.

Metadata can also be written to an XML file when exporting mesh. The only mesh export command which supports the
XML option is genesis export:

Export {Genesis|Mesh} “<mesh_filename>” [XML '<xml_filename>']
The XML file generated during mesh export includes the same information in a geometry metadata file, but also includes

mesh-related data such as mappings between parts and element blocks, and includes any block, nodeset, or sideset
names or descriptions which have been defined.

223

CUBIT 11.0 User Documentation

Importing and Exporting DART Artifacts

The DART project has defined a specific way to package data files with corresponding metadata files. A correctly
packaged set of data files with a corresponding metadata file is called an artifact. An artifact’'s metadata file is always
located in the same directory as the primary data file, and is always named artifact.dta.

Within the DART environment, dependencies between artifacts may be tracked by placing tracking information into
metadata files. CUBIT supports automated artifact dependency tracking. Tracking information in an input metadata file is
automatically reflected in any output metadata file written by CUBIT.

If input is correctly packaged as an artifact, CUBIT can automatically locate and read the metadata file corresponding to a
particular input data file. To have CUBIT do this, select the “Import as Artifact” checkbox in the Open File dialog.

CUBIT can also package output as an artifact. To do so, select the “Export as Artifact” checkbox in the export dialog box.

When importing or exporting artifacts using the command line, include the XML option in the import or export command,
specifying the xml file called artifact.dta in the same directory as the main data file.

For dependency tracking purposes, it may be necessary to import an artifact's metadata file by itself. For example, it may
be necessary to import an artifact consisting of an IGES file. Since the Import IGES command does not support the XML
option, the metadata file must be imported separately. To do so, use the command:

Import XML “<xml_filename>"

When working with correctly packaged artifacts, the XML filename will always be artifact.dta.

224

CUBIT 11.0 User Documentation

Mesh Generation

Interval Assignment

Meshing Schemes

Meshing the Geometry

Mesh Quality Assessment

Mesh Madification

Mesh Validity

Mesh Adaptivity and Sizing Functions
Mesh Deletion

The methods used to generate a mesh on existing geometry are discussed in this chapter. The definitions used to
describe the process are first presented, followed by descriptions of interval specification, mesh scheme selection, and
available curve, surface, and volume meshing techniques. The chapter concludes with a description of the mesh editing
capabilities, and the quality metrics available for viewing mesh quality.

Element Types

For each entity topology-type in the model geometry, CUBIT can discretize the entity using one, or several, types of basic
elements, for each order entity in the geometry (vertex, curve, etc.). CUBIT uses a basic element designator to describe
the corresponding entity, or entities, in the mesh, and a given geometric topology entity can be discretized with one, or
several, of basic elements types in CUBIT. For example, a geometric surface in CUBIT is discretized into a number of
faces, where faces is the basic element designator for surfaces. These faces can consist of two types of basic elements,
quadrilaterals or triangles. The basic element designators corresponding to each type of geometric entity, along with the
types of basic elements supported in CUBIT, are summarized in the table below.

Geometry Entity Type Basic Element Designator Basic Element(s) In CUBIT
Vertex Node Node

Curve Edge Edge

Surface Face Quadrilateral, Triangle

Volume (or Body) Element Hexahedron, Tetrahedron, Pyramid

For each basic element, CUBIT also supports several element type definitions, whose use depends on the level of
accuracy desired in the finite element analysis. For example, CUBIT can write both linear (4-noded) and quadratic (8- or
9-noded) quadrilaterals. The element type definition is specified after meshing occurs, as part of the boundary condition
specification. See Finite Element Model Definition for a description of that process and the various element types
available in CUBIT.

Each mesh entity is associated with a geometric entity which "owns" it. This associativity allows the user to mesh, display,
color, and attach attributes to the mesh through the geometry. For example, setting a mesh attribute on a surface affects
all faces owned by that surface.

Mesh Generation Process

Starting with a geometric model, the mesh generation process in CUBIT consists of four primary steps:
Set interval size and count for individual entities or groups

The size or interval is always applied to a specific geometric entity. For example:

volume 1 size 2.0

225

CUBIT 11.0 User Documentation

Set mesh schemes

CUBIT supports numerous meshing schemes for meshing solid model entities. For example:
volume 1 scheme sweep

Generate the mesh for the model

Use the mesh command to generate the mesh on a specified geometric entity. For example:
mesh volume 1

Inspect mesh for quality and suitability for targeted analysis

CUBIT provides various quality metrics for the user to verify the suitability of the mesh for analysis. The quality command
can be used to check the elements generated on a specific geometric entity. For example:

quality volume 1

There are also mechanisms for improving mesh quality locally using smoothing and local mesh topology changes and
refinement. For complex models, this process can be iterative, repeating all of the steps above.

The mesh for any given geometry is usually generated hierarchically. For example, if the mesh command is issued on a
volume, first its vertices are meshed with nodes, then curves are meshed with edges, then surfaces are meshed with
faces, and finally the volume is meshed with hexes. Vertex meshing is of course trivial and thus the user is given little
control over this process. However, curve, surface, and volume meshing can be directly controlled by the user. Each of
the steps listed are described in detail in the following sections.

Interval Assignment

Interval Firmness

Explicit Specification of Intervals
Automatic Specification of Intervals
Interval Matching

Periodic Intervals

Relative Intervals

Mesh Preview

Mesh density is usually controlled by the intervals, i.e. the number of mesh edges, specified on curves. Intervals are set
either directly by specifying the interval count for a curve, or by specifying a desired size for each interval on a curve.
Intervals can be specified for curves individually, or indirectly by specifying intervals for higher order geometry containing
those curves. Because of interval constraints imposed by various meshing algorithms in CUBIT, the assignment of
intervals to curves is not completely arbitrary. For this reason, a global interval match must be performed prior to meshing
one or more surfaces or volumes.

Interval Firmness

Before describing the methods used to set and change intervals, it is important that the user understand the concept of
interval firmness. An interval firmness value is assigned to a geometry curve along with an interval count or size; this
firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by interval matching

soft: current interval count is a goal and may be adjusted up or down slightly by interval matching or
changed by other interval size commands.

default: default firmness setting, used for detecting whether intervals have been set explicitly by the
user or by other tools

226

CUBIT 11.0 User Documentation

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firmness along with an interval
count or size. Commands and tools which change intervals also affect the interval firmness of the curves. Those same
commands and tools which change intervals can only do so if the curves being changed have a lower-precedence interval
firmness. The firmness settings are listed above in order of decreasing precedence. For example, some commands are
only able to change curves whose interval firmness is soft or default ; curves with hard firmness are not changed by these
commands.

More examples of interval setting commands and how they are affected by firmness are given in the following sections.

A curve's interval firmness can be set explicitly by the user, either for an individual curve or for all the curves contained in
a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness of default , and any command that changes intervals (including interval
assignment) upgrades the firmness to at least soft .

Precedence

If a size is specified multiple times for a single entity, the following precedence is used:

® The highest firmness command takes precedence.
Hard commands include "curve <id> interval <val>", and "{geometry_list} interval hard" will fix the size at the
current size.

e Within a given firmness, the last-issued command takes precedence.
For example, if the user commands "surface 1 size 1" then "volume 1 size 2", and surface 1 is part of volume 1,
then surface 1 will have a size of 2.

Explicit Specification of Intervals

The density of edges along curves is specified by setting the actual number of intervals or by specifying a desired interval
size. The number of intervals or interval size can be explicitly set curve by curve, or implicitly set by specifying the
intervals or interval size on a surface or volume containing that edge. For example, setting the intervals for a volume sets
the intervals on all curves in that volume.
The commands to specify the number of intervals at the command line are:

{Curve|Surface|Volume|Body|Group} <range> Interval <intervals>

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size <interval_size>
The first command above sets interval counts. When setting interval counts for surfaces, volumes, bodies and groups, an
intervals firmness of soft is assigned to the owned curves. When setting the interval count for a curve, a firmness of hard
is assigned.

Interval size may be specified as well; the interval count for each owned curve is computed by dividing the curve's arc
length by the specified interval size. Interval size commands always assign a firmness of soft to the specified entities.

The user can scale the current intervals or size with the following commands. Scaling is done on an entity by entity basis.
{Curve|Surface|Volume|Body|Group} <range> Interval Factor <factor>

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size Factor <factor>

Automatic Specification of Intervals

In addition to specifying intervals explicitly based on a known count or size, CUBIT is also able to compute interval counts
automatically based on characteristics of the model geometry. The following automatic interval setting command can be
used:

{geom_list} Size Auto [Factor <factor>]

227

CUBIT 11.0 User Documentation

Vertices are not valid in the geom_list for this command. Automatic interval assignment works by examining the geometric
characteristics of the entities in the geom_list and assigning a heuristic size to the entities and their child entities. The
factor may be a floating point number between 1 and 10, where 1 represents a fine interval size and 10 represents a
coarse size. Figure 1 shows an example of different auto size specification on a CAD model.

228

.
=]

A N D Ty e [,

._-'-'._'-"ﬂ.h.- Ty ~

4z

=
P e e e L

(b) auto size factor = 5.0

CUBIT 11.0 User Documentation

(c) auto size factor = 1.0

The user may assign the interval size to be the arc length of the smallest curve contained in the specified entity or entities
using the following command:

{geom_list} Size Smallest Curve

Vertices are not allowed in the geom_list for this command. This command assigns a soft interval firmness.

Default auto interval specification

If intervals have not been explicitly defined by the user for the curves or their owning surfaces and volumes, an auto size
factor of 5 will automatically be computed for the entities being meshed. The automatic size specifications can be
overridden easily by specifying another auto size factor or an explicit interval size.

If an auto size factor of 5 is undesirable for most meshing operations, the default factor may be changed by using the
following command:

Set Auto Size Default <value>

where value is a number from 1 to 10. This will be the default auto size factor used when either a factor has not been
specified on the size auto command or the entity is meshed without otherwise setting explicit intervals or size.

In previous versions of CUBIT a default interval of 1 was assigned to all entities. If this behavior is still desired, the
following command may be used to enforce this condition:

Set Default Autosize [ON|off]

Maximum Spanning Angle on Arcs

On many CAD models, arcs or small holes require that a finer mesh be specified around these entities in order to maintain
reasonable mesh quality. To facilitate this, the user may specify the maximum angle an element edge may span on an
arc. To change or list the maximum arc span, use the following commands

Set Maximum Arc_Span <angle>
List Maximum Arc_Span
Where angle is a positive value less than 360. The maximum arc span setting will only be used if there is not already a

user defined interval set on the arc. Figure 2 shows the effect of three different maximum arc_span settings on a simple
cylinder using the sweep mesh scheme.

Figure 2. maximum arc_span settings of 90, 45 and 15 degrees respectively.

Default arc span setting: In addition to setting an automatic size factor, if there are otherwise no user-defined interval
sizes defined on an arc and no maximum arc_span has been set by the user when a tetrahedral mesh or triangle mesh
is defined, a maximum spanning angle of 60 degrees will be used. Removing the use of the arc_span setting can be
accomplished with the following:

Set Maximum Arc_Span Default

Note that once interval sizes have been defined when the entity has been meshed, it may be necessary to reset the
interval settings (reset {geom_list}) to use a new maximum arc span setting when remeshing.

229

CUBIT 11.0 User Documentation

Interval Matching

Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned to the curves bounding the entity
being meshed. For example, meshing any surface with quadrilaterals requires that the surface be bounded by an even
number of mesh edges. This constrains the intervals on the bounding curves to sum to an even number. For a collection
of connected surfaces and volumes, these interval constraints must be resolved globally to ensure that each surface will
be meshable with the assigned scheme. The global solution technique implemented in CUBIT is referred to as interval
matching.

When meshing a surface or volume, matching intervals is performed automatically. In some cases, interval matching
needs to be invoked manually, for example when meshing a collection of volumes, or a collection of surfaces not in a
common volume. Interval matching can also be called to check whether the assigned intervals and schemes are
compatible.

The command syntax for manually matching intervals is the following:
Match Intervals {Surface|Volume|Body|Group} <range>
Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and curves.

The interval matcher assigns intervals as close as possible to the user-specified intervals, while satisfying global interval
constraints. The goal is to minimize the relative change in pre-assigned intervals on all entities. Interval matching only
changes curves with interval firmness of soft or default .

Extra constraints can be added by the user to improve mesh quality locally; in particular, curves can be constrained to
have the same intervals using the command

Curve <range> Interval {Same|Different}

Specifying that curves have the "same" intervals stores them in a set. More curves may be added to an existing set, and
sets merged, by future commands. The current contents of the affected sets are printed after each command. A curve
may be removed from a set by specifying that its intervals are "different.”

The interval assignment algorithm tries to find one good interval solution from among the possibly infinite set of solutions.
However, if many curves are hard-set or already meshed, there may be no solution. To improve the chances of finding a
solution, it is suggested that curves are soft-set whenever possible. Also, a solution might not exist due to the way the
local selections of corners and sides of mapped surfaces interact globally. If there is no solution, the following command
may help in determining the cause:

Match Intervals {Surface|Volume|Body|Group} <range> [Seed Curve <range>] [Assign Groups
[Only|Infeasible]] [Map|Pave]

Specifying Assign Groups will create groups that contain independent subproblems of the global problem. Specifying
Assign Groups Only will group independent subproblems, but the algorithm will not attempt to solve these subproblems.
Assign Groups Infeasible will put each independent subproblem with no solution into specially named groups. Often
poor corner choices and surface meshing schemes will be illuminated this way. If Map or Pave is specified, then only
subproblems involving mapping or paving constraints will be considered. If a Seed Curve is specified, then only those
subproblems containing that curve will be considered.

Advanced users may also wish to experiment with setting the following, which may change the interval solution slightly:
Set Match Intervals Rounding {on|off}
Set Match Intervals Fast {on|off}
The user can also constrain the parity of intervals on curves:
{Curve|Surface|Volume} <range> Interval {Even | Odd}
If Even is specified, then during subsequent interval setting commands and during interval assignment, curves are forced
to have an even number of intervals. If the current number of intervals is odd, then it is increased by one to be even. If
Odd is specified then intervals may be either even or odd. Setting intervals to even is useful in problems where adjoining
faces are paved one by one without global interval assignment.
Rather than specifying a specific size or interval for a curve or surface, which may overconstrain the interval matcher, you

can specify an upper and lower bound that is acceptable. This would typically be used in a complex assembly where there
may be multiple intervals that may interact in order to get a compatible mapped/swept mesh through the assembly.

230

CUBIT 11.0 User Documentation

Surface <surface_id_range> {Interval|Size|Periodic Interval} {Lower|Upper} Bound
{On|Off|<bound>}

Periodic Intervals

The number of intervals on a periodic surface, such as a cylinder, in the dimension that is not represented by a curve is
usually set implicitly by the surface size.

However, periodic intervals and firmness can be specified explicitly by the following commands:
Surface <range> Periodic Interval <intervals>

Surface <range> Periodic Interval {Default|Soft|Hard}

Relative Intervals

If the user needs fine control over mesh density, then for curvy or slanted sides of swept geometries, it is often useful to
treat curves as if they had a different length when setting interval sizes. For example, the user may wish to specify that a
slanting side curve and a straight side curve have the same "relative" length, despite their true length as shown in the
following figure. These are not interval matching constraints; interval matching may change intervals so that the user-
specified ratio does not hold exactly.

0.55
1.0 1.0

0.45

1.0

The relative lengths of curves are set with the following command:
{geom_list} Relative Length <size>

The following command is used to assign intervals proportional to these lengths:
{geom_list} Relative Interval <base_interval>

For a curve with relative length x, setting a relative interval of y produces xy intervals, rounded to the nearest integer.

Mesh Interval Preview

It is sometimes useful to view the nodal locations/intervals on curves graphically before meshing (which can take
considerably more time). The command to do this is:

Preview Mesh {body|volume|surface|curve|vertex} <id_range> [hard]

To clear the display of the temporary nodes, simply issue a "display" command. The purpose of the hard option is that
only curves that have an interval firmness of hard will be previewed.

Meshing Schemes

Meshing schemes in CUBIT can be divided into four broad categories.

Traditional Meshing Schemes
Free Meshing Schemes
Conversional Meshing Schemes
Duplication Meshing Schemes

231

CUBIT 11.0 User Documentation

In addition, Cubit now supports limited parallel meshing features for use with the pCamal application.

. Parallel Meshing

If no scheme is selected, Cubit will attempt to assign a scheme using the automatic scheme selection methods.

e Automatic Scheme Selection

Traditional Meshing Schemes

Traditional meshing schemes are used to apply a mesh to an existing geometry using the methods described in Meshing
the Geometry (i.e. setting a scheme, applying interval sizes, and meshing). Traditional meshing schemes are available for
all geometry types.

. Bias, Dualbias e STransition
e Circle e Stretch

e Curvature e Submap

e Equal e Sweep

e Hole e Tetmesh

e Mapping e Tetprimitive
e Pave e Tridelaunay
e Pentagon e Trimap

® Pinpoint e Trimesh

e Polyhedron e Tripave

e Sphere e Triprimitive

Free Meshing Schemes

Free meshing schemes will create a free-standing mesh without any existing geometry

(] Radialmesh

Conversional Meshing Schemes

Conversional meshing schemes are used to convert an existing mesh into a mesh of different element type or size. For
example, the THex scheme will convert a tetrahedral mesh into a hexahedral mesh.

9
(o]
®

o o 0 0o o
7 = 2
¥ ey

TQuad

Duplication Meshing Schemes

Duplication meshing schemes are used to copy an existing mesh from one geometry onto another similar geometry.

£
S

General Meshing Information

Information on specific mesh schemes available in CUBIT is given in this section. The following sections have important
meshing-related information as well, and should be read before applying any of the mesh schemes described below.

232

CUBIT 11.0 User Documentation

In most cases, meshing a geometric entity in CUBIT consists of three steps:

Set the interval number or size for the entity (See Interval Assignment.)
Set the scheme for the object, along with any scheme-specific information, using the scheme setting commands

described below.

e Mesh the object, using the command:

Mesh {geom_list}

This command will match intervals on the given entity, then mesh any unmeshed lower order entities, then mesh the given

entity.

After meshing is completed, the mesh quality is automatically checked (see Mesh Quality Assessment), then the mesh is

drawn in the graphics window.

The following table classifies the meshing schemes with respect to their applicable geometry.

Curves

Bias/Dualbias

g

Curvature

9
(o]
@

m
I
[N

Pinpoint

Stretch

Surfaces Volumes

Circle Copy

Copy Dice

Dice HTet

Hole Mapping

Mapping Polyhedron

Mirror Sphere

Pave Submap

Pentagon Swee

Polyhedron TetMesh, TetINTRIA
Tri Tetprimitive

Submap THex

TriDelaunay

Triprimitive

TriMay

TriMesh, TriAdvance

TriPave

STransition

233

CUBIT 11.0 User Documentation

Bias Dualbias

Summary:Meshes a curve with node spacing biased toward one or both curve ends.
Syntax:

Curve <range> Scheme Bias {Factor|First_Delta|Fraction} <double> [Start Vertex <id>]
[preview]

Curve <range> Scheme Dualbias {Factor|First_Delta|Fraction} <double> [preview]

Curve <range> Scheme Bias Fine Size <double>
{Coarse Size <double> | Factor <double>} [Start Vertex <id>] [preview]

Curve <range> Scheme Dualbias Fine Size <double>
{Coarse Size <double> | Factor <double>} [preview]

Related Commands:
Curve <range> Reverse Bias

See also surface sizing function type bias

See also curve scheme stretch

The main differences between scheme bias and stretch are the following: scheme stretch does not use strict geometric
series for node placement. If you specify scheme bias or dualbias using the "fine size" form, the interval count will be
hard-set to a value that fills in the curve.

Discussion:

The Bias and DualBias schemes space the curve mesh unequally, placing more nodes towards (or away from) the ends
of the curve according to a geometric progression. The ratio of successive edges is the "factor," which may be greater
than or less than one. For bias, the series starts at the first vertex of the curve, or the "start vertex" if specified. For
dualbias, the series starts at both ends of the curve and meets in the middle.

The command behaves differently depending on which set of parameters are specified. There are three basic variables:
the interval count, the bias factor, or the first edge size. The curve length is a given, fixed quantity. The user can specify
any two of these variables, and the third will be automatically determined.

If the "{Factor|First_Delta|Fraction}" form is specified, then the interval count is taken as a given. The interval count is
whatever was specified previously by an interval count or size command (see Interval Assignment). If "Factor" is
specified, then the first edge size will be automatically chosen so that the geometric progression of edges "fit" onto the
curve. If "first_delta" is specified, then the first edge length is exactly that absolute value, and the "factor" is automatically
chosen. If "fraction" is specified, then the first edge length is the curve length times that fraction, and again the "factor" is
automatically chosen.

If the "fine size" is specified, then the first edge length is exactly that absolute value. If the "factor" is specified, then the
interval count is automatically chosen. If an approximate coarse size is specified, then this also determines the factor, and
again the interval count is automatically chosen. If a surface sizing function type bias is used, then the curves of the
surface are sized using similar formulas.

If no start or end vertex is specified, the curve's start vertex is used as the starting point of the bias. (A curve's start vertex
can be identified by listing the curve from the "CUBIT>" prompt.)

If a curve, meshed with the bias scheme, needs to have its nodes distributed towards the opposite end, it can be easily
edited using the reverse bias command. Reversing the curve bias using this command is equivalent to setting a bias
factor equal to the inverse of the original bias factor.

The preview option will allow the user to preview mesh size and distribution on the curve before meshing.

The following figure shows the result of meshing edges with equal, bias and dualbias schemes.

234

CUBIT 11.0 User Documentation

Circle

Applies to: Surfaces
Summary: Produces a circle-primitive mesh for a surface
Syntax:
Surface <range> Scheme Circle [Interval <int> | Delta_r <double>] [fraction <double>]
Discussion:

The Circle scheme is used in regions that should be meshed as a circle. A "circle" consists of a single loop of bounding
curves containing an even number of intervals. Thus, the circle scheme can be applied to circles, ellipses, ovals, and
regions with "corners" (e.g. polygons). The bounding curves should enclose a convex region. Non-planar bounding loops
can also be meshed using the circle primitive provided the surface curvature is not too great. The mesh resembles that
obtained via polar coordinates except that the cells at the "center" are quadrilaterals, not triangles. See Figure 1 for an
example of a circle mesh. Radial grading of the mesh may be achieved via the optional [intervals] input parameter or by
specifying the radial size [delta_r] of the outermost element. The Fraction option has the range 0 < fraction < 1 and
defaults to 0.5. Fraction determines the size of the inner portion of the circle mesh relative to the total radius of the circle.

Figure 1. Circle Primitive Mesh

Curvature

Applies to: Curves
Summary: Meshes curves by adapting the interval size to the local curvature.
Syntax:

Curve <range> Scheme Curvature <double>
Discussion:
The value of <double> controls the degree of adaption. If zero, the resulting mesh will have nearly equal intervals. If
greater than zero, the smallest intervals will correspond to the locations of largest curvature. If less than zero, the largest
intervals will correspond to the locations of largest curvature. The default value of <double> is zero. Straight lines and
circular arcs will produce meshes with near-equal intervals. The method for generating this mesh is iterative and may

sometimes not converge. If the method does not converge, either the <double> is too large (over-adaption) or the number
of intervals is too small. Currently, the scheme does not work on periodic curves.

235

CUBIT 11.0 User Documentation

Equal

Applies to: Curves
Summary: Meshes a curve with equally-spaced nodes
Syntax:

Curve <range> scheme Equal
Discussion:

See Interval Assignment for a description of how to set the number of nodes or the node spacing on a curve.

Hole

Applies to: Annular Surfaces

Summary: Useful on annular surfaces to produce a "polar coordinate" type mesh (with the singularity removed).

Syntax:
Surface <surface_id_range> Scheme Hole [Rad_intervals <int>] [Bias <double>] [Pair Node
<id> With Node <id>]

Discussion:

A polar coordinate-like mesh with the singularity removed is produced with this scheme. The azimuthal coordinate lines
will be of constant radius (unlike scheme map) The number of intervals in the azimuthal direction is controlled by setting
the number of intervals on the inner and outer bounding loops of the surface (the number of intervals must be the same
on each loop). The number of intervals in the radial direction is controlled by the user input, rad_intervals (default is one).

A bias may be put on the mesh in the radial direction via the input parameter bias. The default bias of O gives a uniform
grading, a bias less than zero gives smaller radial intervals near the inner loop, and a bias greater than zero gives smaller
radial intervals near the outer loop.

The correspondence between mesh nodes on the inner and outer boundaries is controlled with the pair node "<loop node-
id> with node <loop node-id>" construct. One id on the inner loop and one id on the outer loop should be given to connect
the two nodes by a radial mesh line. Not choosing this option may result in sub-optimal node pairings with possible
negative Jacobians. To use this option, mesh the inner and outer curve loops and then determine the mesh node ids.

236

CUBIT 11.0 User Documentation

Figure 1. Example of Hole Scheme

Mapping
Applies to: Surfaces, Volumes

Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.

Syntax:
{Volume|Surface} <range> Scheme Map

Discussion:

A structured mesh is defined as one where each interior node on a surface/volume is connected to 4/6 other nodes.
Mappable surfaces contain four logical sides and four logical corners of the map; each side can be composed of one or
several geometric curves. Similarly, mappable volumes have six logical sides and eight logical corners; each side can
consist of one or several geometric surfaces. For example, in Figure 1 below, the logical corners selected by the algorithm
are indicated by arrows. Between these vertices the logical sides are defined; these sides are described in Table 1.

Figure 1. Scheme Map Logical Properties

Table 1. Listing of Logical Sides

Logical Side Curve Groups
Side 1 Curve 1
Side 2 Curve 2
Side 3 Curve 3, Curve 4, Curve 5
Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh shown in the right portion of
Figure 1. (i.e. The number of intervals on logical side 1 is equated to the number of intervals on logical side 3). The
process is similar for volume mapping except that a logical hexahedron is formed from eight vertices. Note that the
corners for both surface and volume mapping can be placed on curves rather than vertices; this allows mapping surfaces
and volumes with less than four and eight vertices, respectively. For example, the mapped quarter cylinder shown in
Figure 2 has only five surfaces.

237

CUBIT 11.0 User Documentation

Figure 2. Volume Mapping of a 5-surfaced volume

Pave

Applies to: Surfaces

Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.

Syntax:
Surface <range> Scheme Pave Related Commands:
[set] Paver Diagonal Scale <factor (Default = 0.9)> [set] Paver Grid Cell <factor (Default =
2.5)>[set] Paver LinearSizing {Off | ON} Surface <range> Sizing Function Type ...
[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}
Discussion:

Paving (Blacker, 91; White, 97) allows the meshing of an arbitrary three-dimensional surface with quadrilateral elements.
The paver supports interior holes, arbitrary boundaries, hard lines, and zero-width cracks. It also allows for easy
transitions between dissimilar sizes of elements and element size variations based on sizing functions. Figure 1 shows the
same surface meshed with mapping (left) and paving (right) schemes using the same discretization of the boundary

curves.

| L 1

Figure 1. Map (left) and Paved (right) Surface Meshes

Element Shape Improvement

When meshing a surface geometry with paving, clean-up and smoothing techniques are automatically applied to the
paved mesh. These methods improve the regularity and quality of the surface mesh. By default the paver uses its own
smoothing methods that are not directly-callable from CUBIT. Using one of CUBIT's callable smoothing methods in place
of the default method will sometimes improve mesh quality, depending on the surface geometry and specific mesh
characteristics. If the paver produces poor element quality, switching the smoothing scheme may help. This is done by the

command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

238

CUBIT 11.0 User Documentation

When the "Smooth Scheme" is selected, the smoothing scheme specified for the surface will be used in place of the
paver's smoother. See "Mesh Smoothing"for more information about the available smoothing schemes in CUBIT.

Controlling Flattening of Elements

The smoothers flatten elements, such as inserted wedges, that have two edges on the active mesh front. In meshes
where this "corner" is a real corner, flattening the element may give an unacceptable mesh. The following command
controls how much the diagonal of such an element is able to shrink.

[set] Paver Diagonal Scale <factor (Default = 0.9)>

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will force the element to be a parallelogram as long as it
is on the mesh front. A value of 0.5 will allow the diagonal to be half its calculated length. The element may became
triangular in shape with the two sides on the mesh front being collinear.

Controlling the Grid Search for Intersection Checking

The paver divides the bounding box of a surface into a number of cells based on the average length of an element. It uses
these cells to speed intersection checking of new element edges with the existing mesh. If both very long and very short
edges fall in the same area, it is possible that a long edge which spans the search region is excluded from the intersection
check when it does intersect the new element. The following command allows the user to adjust the size of the grid cells.

[set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size, which then becomes the grid cell size. The
surface's bounding box is divided by this cell size to determine the number of cells in each direction. A larger cell size
means each cell contains more nodes and edges. A smaller cell size means each cell has fewer nodes and edges. A
larger cell size forces the intersection algorithm to check more potential intersections, which results in long paver times. A
smaller cell size gives the intersection algorithm few edges to check (faster execution) but may result in missed
intersections where the ratio of long to short element edges is great. Increase this value if the paver is missing
intersections of elements.

Controlling the Paver Sizing Function

The paving algorithm will automatically select a "linear" sizing function if the ratio the largest element to the smallest is
greater than 6.0 and no other sizing function is specified for the surface. This is usually desirable. When it is not, the user
can change this behavior with the command:

[set] Paver LinearSizing {Off | ON}

Setting paver linear sizing to "off" will keep the default behavior. The size of the element will be based on the side(s) of the
element on the mesh front. For a discussion of sizing functions, including how to automatically set up size transitions, see
Adaptive Meshing.

Surface Vertex Types

Surface Vertex Commands

Listing and Drawing Vertex Types

Triangle Vertex Types

Adjusting the Automatic Vertex Type Selection Algorithm
Volume Curve Types

Several meshing algorithms in CUBIT "“classify" the vertices of a surface or volume to produce a high quality mesh. This
classification is based on the angle between the edges meeting at the vertex, and helps determine where to place the
corners of the map, submap or trimesh, or the triangles in the trimap or tripave schemes. For example, a surface mapping
algorithm must identify the four vertices of the surface that best represent the surface as a rectangle. Figure 1 illustrates
the vertex angle types for mapped and submapped surfaces, and the correspondence between vertex types and the
placement of corners in a mapped or submapped mesh.

239

CUBIT 11.0 User Documentation

{~270 deg
END
{50 deg
REVERSAL
(~300deg)
SIDE
(180 deg)

Figure 1. Angle Types for Mapped and Submapped Surfaces: An End vertex is contained in one element, a Side vertex
two, a Corner three, and a Reversal four.

The surface vertex type is computed automatically during meshing, but can also be specified manually. In some cases,
choosing vertex types manually results in a better quality mesh or a mesh that is preferable to the user. Vertex types have

a firmness, just as meshing schemes do. Automatically selected vertex types are soft, while user-set vertex types are
hard. Instead of a type, an angle in degrees can be specified instead.

Surface Vertex Commands

Vertex types are set using the following commands:

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type
{End|Side|Corner|Reversal}

Surface <surface_id> Set Vertex [<vertex_id_range> [Loop_index <int>]] Angle <value>

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Default|Soft|Hard}

If no vertices are specified, the command is applied to all vertices of each surface. The loop_index is used only for
vertices that are on the boundary of a single surface more than once.

Note that a vertex may be connected to several surfaces and its classification can be different for each of those surfaces.

The influence of vertex types when mapping or submapping a surface is illustrated in Figure 2. There, the same surface is
submapped in two different ways by adjusting the vertex types of ten vertices.

HEEEEEEERAEE
HENEEEER AR RN

Mesh & Vertex Types Mesh & Vertex Types

240

CUBIT 11.0 User Documentation

Logical submap shape Logic al subm=ap shape

Figure 2. Influence of vertex types on submap meshes; vertices whose types are changed are indicated above, along with
the mesh produced; logical submap shape shown below.

Listing and Drawing Vertex Types
Listing a surface lists the types of the vertices. The vertex type settings may also be drawn with the following commands:

Draw Surface <surface_id_range> {Vertex Angle|Vertex Type}

Triangle Vertex Types

For a surface that will be meshed with scheme trimap or tripave, the user may specify the angle below which triangles are
inserted:

Surface <surface_id_range> Angle <angle>
The user may also set whether to add a triangle at a particular vertex:

Surface <surface_id> Set [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Triangle|Nontriangle}

Adjusting the Automatic Vertex Type Selection Algorithm
The user may specify the maximum allowable angle at a corner with the following command:
Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the others by changing the following
absolute weights. The corner weight considers how large angles are at corners. The turn weight considers how L-
shaped the surface is. The interval weight considers how much intervals must change. The large angle weight affects
only auto-scheme selection: surfaces with a large angle will be paved instead. Each weight's default is 1 and must be
between 0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

Set Turn Weight <value>

Set Interval Weight <value>

Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 2. The meshes produced by
submapping on the left and right result from adjusting the vertex types of the eight vertices shown.

Volume Curve Types

When sweeping, a 2.5 dimensional meshing scheme, curves perpendicular to the sweep direction can have a type with
respect to the volume. These types are usually automatically selected. The following commands are useful:

Draw Volume <surface_id_range> {Curve Angle|Curve Type}

List Volume <volume_id> Curve Type

241

CUBIT 11.0 User Documentation

Volume <volume_id> Set [Curve <curve_id_range>] Type {End|Side|Corner|Reversal}

Volume <volume_id> Set [Curve <curve_id_range>] Type {Default|Soft|Hard}

Pentagon

Applies to: Surfaces
Summary: Produces a pentagon-primitive mesh for a surface
Syntax:
Surface <range> Scheme Pentagon
Discussion:

The pentagon scheme is a meshing primitive for 5-sided regions. It is similar to the triprimitive and polyhedron schemes,
but is hard-coded for 5 sided surfaces.

The pentagon scheme indicates the region should be meshed as a pentagon. The scheme works best if the shape has 5
well-defined corners; however shapes with more corners can be meshed. The algorithm requires that there be at least 10
intervals (2 per side) specified on the curves representing the perimeter of the surface. In addition, the sum of the intervals
on any three connected sides must be at least two greater than the sum of the intervals on the remaining two sides.
Figure 1 shows two examples of pentagon meshes.

242

CUBIT 11.0 User Documentation

Figure 1. Examples of Pentagon Scheme Meshes

Pinpoint
Applies to: Curves
Summary:Meshes a curve with node spacing specified by the user.
Syntax:

Curve <range> Scheme Pinpoint Location <list of doubles>
Discussion:
The Pinpoint scheme allow the user to specify exactly where on a curve to place nodes. The list of doubles are absolute
positions, measured from the start vertex. The user can enter as many as needed, and they do not need to be in
numerical order. Below is an example of a curve that has been meshed using the following scheme:

curve 2 scheme pinpoint location 1456 6.2 6.4 6.6 9:

Polyhedron

Applies to: Surfaces and Volumes.

Summary: Produces an arbitrary-sided block primitive mesh for a surface or volume.

Syntax:
Volume <range> Scheme Polyhedron
Surface <range> Scheme Polyhedron
Discussion:

The polyhedron scheme is a meshing primitive for 2d and 3d n-sided regions. This is similar to the triprimitive ,
tetprimitive, and pentagon schemes, except rather than 3, 4, or 5 sides, it allows an arbitrary number of sides. The
scheme works best on convex regions. Surfaces must have only one loop, and each vertex must be connected to exactly
two curves on the surface (e.g., no hardlines). Volumes must have only one shell, each vertex must be connected to
exactly three surfaces on the volume, and each surface should be meshed with scheme polyhedron. There are some
interval assignment requirements as well, which should be automatically handled by CUBIT.

If the polyhedron scheme is specified for the volume, then the surfaces of the volume are automatically assigned scheme
polyhedron as well, unless they were hard-set by the user. Schemes should be specified on all volumes of an assembly
prior to meshing any of them. Scheme polyhedron attaches extra data to volumes; if Cubit is behaving strangely, the user
may need to explicitly remove that data with a reset volume all, or similar command.

Scheme polyhedron was designed for assemblies of material grains, where each volume is roughly a Voronoi region, and
the assembly is a periodic space-filling model (tile). Figure 1 shows two examples of polyhedron meshes.

243

CUBIT 11.0 User Documentation

244

CUBIT 11.0 User Documentation

Figure 1. Examples of Polyhedron Scheme Meshes

Sphere

Applies to: Volumes topologically equivalent to a sphere and having one surface.

Summary: Generates a radially-graded hex mesh on a spherical volume.

Syntax:
Volume <range> Scheme Sphere [Graded_interval <int>] [Az_interval <int>] [Bias <val>]
[Fraction <val>]

Discussion:

This scheme generates a radially-graded mesh on a spherical volume having a single bounding surface. The mesh is a
straightforward generalization of the circle scheme for surfaces. The number of azimuthal intervals around the equator is
controlled by the az_interval input parameter. The number of radial intervals in the outer portion of the sphere is controlled
by the graded_interval input parameter. Azimuthal mesh lines in the outer portion of the sphere have constant radius. The
inner portion of the volume mesh forms a cube. The bias parameter controls the amount of radial grading in the outer
portion of the mesh (default=1 gives a uniform mesh). The fraction parameter (between 0 and 1) determines what fraction
of the sphere is occupied by the inner cube.

Figure 1. Sphere Scheme Example

STransition

Applies to: Surfaces
Summary:
Produces a simple transitional mapped mesh.
Syntax:
Surface <surface_id_range> Scheme STransition

Discussion:

245

CUBIT 11.0 User Documentation

The STransition scheme transitions a mesh from one element density to another across a surface. This scheme is

particularly helpful when the Paving scheme produces a poor mesh. The following two figures show a specific case where
the STransition scheme may offer an improvement.

2
2 } 4 Pave scheme
2
2
‘)
2 :I 4 STransition scheme
| j
2

For triangular surfaces, the STransition scheme will produce similar results when compared to the Triprimitive scheme.
However, STransition is capable of handling more varied interval settings. The following triangle fails when using the
Triprimitive scheme but succeeds with the STransition scheme.

STransition scheme on a triangular surface with intervals
& setto 3, 3, and 6.

The figures below show the STransition meshing scheme response to different shapes and interval settings.

2
2] 4 STransition scheme on a rectangular surface with three
j intervals set to 2 and one set to 4.
2

246

CUBIT 11.0 User Documentation

5 3 STransition scheme on a rectangular surface with
intervals set to 2, 3, 4, and 5.

4

The user also has the option of specifying END or SIDE surface vertex types.

2 2
end and
2 g STransition scheme on a hexagon surface with five intervals
set to 2, one interval set to 8, and user specified endpoints.
and End
2 2

Note, that the Centroid Area Pull smoothing algorithm sometimes gives better results than the default Winslow smoothing
algorithm for STransition meshes.

Submap

Applies to: Surfaces, Volumes
Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical sides
Syntax:

{Surface|Volume} <range> Scheme Submap
Related Commands:

{Surface|Volume} <range> Submap Smooth <on|off>
Discussion:
Submapping (Whiteley, 96) is a meshing tool based on the surface mapping capability discussed previously, and is suited
for mesh generation on surfaces which can be decomposed into mappable subsurfaces. This algorithm uses a
decomposition method to break the surface into simple mappable regions. Submapping is not limited by the number of
logical sides in the geometry or by the number of edges. The submap tool, however is best suited for surfaces and

volumes that are fairly blocky or that contain interior angles that are close to multiples of 90 degrees.

An example of a volume and its surfaces meshed with submapping is shown in Figure 1.

247

CUBIT 11.0 User Documentation

Figure 1. Quadrilateral and Hexahedral meshes generated by submapping

Like the mapping scheme, submapping uses vertex types to determine where to put the corners of the mapped mesh
(See Surface Vertex Types). For surface submapping, curves on the surface are traversed and grouped into " logical
sides " by a classification of the curves position in a local "i-j" coordinate system.

Volume submapping uses the logical sides for the bounding surfaces and the vertex types to construct a logical "i-j-k"
coordinate system, which is used to construct the logical sides of the volume. For surface and volume submapping, the
sides are used to formulate the interval constraints for the surface or volume.

Figure 2 shows an example of this logical classification technique, where the edges on the front surface have been
classified in the i-j coordinate system; the figure also shows the submapped mesh for that volume.

Figure 2. Scheme Submap Logical Properties

After submapping has subdivided the surface and applied the mapped meshing technique mentioned above, the mesh is
smoothed to improve mesh quality. Because the decomposition performed by submapping is mesh based, no geometry is
created in the process and the resulting interior mesh can be smoothed. Sometimes smoothing can decrease the quality
of the mesh; in this case the following command can turn off the automatic smoothing before meshing:

{Surface|Volume} <range> Submap Smooth <on|off>
Surface submapping also has the ability to mesh periodic surfaces such as cylinders. An example of a periodic surface

meshed with submapping is shown in Figure 3. The requirement for meshing these surfaces is that the top and bottom of
the cylinder must have matching intervals.

248

CUBIT 11.0 User Documentation

Figure 3. Periodic Surface Meshing with Submapping
For periodic surfaces, there are no curves connecting the top and bottom of the cylinder. Setting intervals in this direction
on the surface can be done by setting the periodic interval for that surface (see Interval Assignment. No special

commands need to be given to submap a periodic surface, the algorithm will automatically detect the fact that the surface
is periodic. Currently, periodic surfaces with interior holes are not supported.

Stretch

Applies to: Curves

Summary: Permits user to specify the exact size of the first and/or last edges on a curve.

Syntax:
Curve <range> Scheme Stretch [First_size <double>] [Start Vertex <id>]
Curve <range> Scheme Stretch [First_size <double>] [Last_size <double>] [Start Vertex <id>]
Curve <range> Scheme Stretch [Stretch_factor <double>] [Start Vertex <id>]

Related Commands:

Scheme Bias and Dualbias.

Discussion:

This scheme allows the user to specify the exact length of the first and/or last edge on a curve mesh. Intermediate edge
lengths will vary smoothly between these input values. Reasonable values for these parameters should be used (for
example, the sizes must be less than the total length of the curve). If last_size is input, first_size must be input also. If

stretch_factor is input, neither first_size nor last_size can be input. This scheme does not currently work on periodic
curves.

Stride

Applies to: Curves
Summary: Mesh a curve with node spacing based on a general field function.
Syntax:
Curve <range> Scheme Stride
Discussion:
The ability to specify the number and location of nodes based on a general field function is also available in CUBIT. With
this capability the node locations along a curve can be determined by some field variable (e.g. an error measure). This
provides a means of using CUBIT in adaptive analyses. To use this capability, a sizing function must have been read in

and associated to the geometry (See Exodus Il -based field function for more information on this process). After a sizing
function is made available, the stride scheme can be used to mesh the curves.

249

CUBIT 11.0 User Documentation

Sweep

Applies to: Volumes
Summary: Produces an extruded hexahedral mesh for 2.5D volumes.
Syntax:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface] <range>][Rotate
{on | OFF}]

Volume <range> Scheme Sweep Vector <xval yval zval>
Related Commands:

Volume <range> Sweep Smooth [AUTO|copy|linear|residual|winslow][set]

Multisweep Smoothing {ON|off}

Multisweep Volume <range> Remove
Discussion:
The sweep algorithm (Knupp, 98, Scott et.al, 05) can sweep general 2.5D geometries and can also do pure translation or
rotations. A 2.5D geometry is characterized by source and target surfaces which are topologically similar. The hexahedral
mesh is swept (extruded) between source and target along a single logical axis. Bounding the swept hexahedra between

source and target surfaces, are the linking surfaces. Figures 1 and 2 show examples of source, target and linking
surfaces.

Command Options: The user can specify the source and target surfaces. The user can also specify a geometric vector
approximating the sweep direction, and let CUBIT determine the source and target surfaces. The user can specify just the
source surfaces, and let cubit guess the target, or "scheme auto" can also be used.

Source
Surface

Target
Surace

Figure 1. Sweep Volume Meshing

250

CUBIT 11.0 User Documentation

!
|
ﬂhlll'

‘-

= =
‘ C———e

Figure 2. Multiple Linking Surface Volume Meshing with Scheme Sweep

In general, the procedure for using the sweep scheme is to first mesh the source surfaces. Any surface meshing scheme
may be employed. Figure 1 displays swept meshes involving mapped and paved source surfaces. Linking surfaces must
have either mapping or submapping schemes applied. The sweep algorithm can also handle multiple surfaces linking the
source surface and the target surfaces. An example of this is shown in Figure 2. Note that for the multiple- linking-surface
meshing case, the interval requirement is that the total number of intervals along each multiple edge path from the source
surface to the target surface must be the same for each path. Once the appropriate mesh is applied to the source surface
and intervals assigned, the mesh command may be issued.

In many cases auto-scheme selection can simplify this process by recognizing sweepable geometries and automatically
select source and target surfaces. If the source and target surfaces are not specified, CUBIT attempts to automatically
select them. CUBIT also automatically sets curve and vertex types in an attempt to make the mesh of the linking surfaces
lead from a source surface to a target surface. These automatic selections may occasionally fail, in which case the user
must manually select the source/target surfaces, or some of the curve and vertex types. After making some of these
changes, the user should again set the volume scheme to sweep and attempt to mesh.

Occasionally the user must also adjust intervals along curves, in addition to the usual surface interval matching
requirements. For a given pair of source/target surfaces, there must be the same number of hexahedral layers between
them regardless of the path taken. This constrains the number of edges along curves of linking surfaces. For example, in
Figure 1 right, the number of intervals through the holes must be the same as along the outer shell.

Rotate Option: The rotate option of sweeping is a specialized surface meshing option to map polar grids on curved
linking surfaces. The rotate option is most effective when sweeping produces undesirable results due to element biasing
on linking surfaces. The rotate option requires that linking surfaces be enclosed by four curves and that surfaces are not
meshed prior to sweeping. The scheme creates node pairs on opposite linking curves and places interior surface nodes
linearly between the pairs. Node spacing between the pairs is a proportion of the node spacing found on the source curve
of the linking surface. Figure 3 provides an example where sweeping was unable to produce a suitable mesh for a curved
surface, but using the rotate option a polar grid is created for the linking surface.

251

CUBIT 11.0 User Documentation

Figure 3. Example of where the sweep rotate option would be best suited. Figure on left shows mesh without the rotate
option used.

Multisweep

While the basic sweeping algorithm requires only a single source and single target surface, the sweeping algorithm can
also handle multiple source and target surfaces. The multisweep algorithm works by recognizing possible mesh and
topology conflicts between the source and target surfaces and works to resolve these conflicts through the use of the
virtual geometry capabilities in CUBIT. Figure 4 shows some examples of volumes which have been meshed with the
multisweep algorithm.

4..
=
-
} -~ "J
'
E
s
o
.r"‘
= (f’
S L
r
- e E
=l B 1.4
et L4
14
1" 1
A £y
| =" T L
= 11
M
£
s
|7
e, |

et
T 1
T+t
|III
i 7T
'I'(|
III
L

I

1

I

.,
I
7

LT T T T 7

P
N

2 [[Sy

I

/

Figure 4. Examples of Multi-sweep meshes.

252

CUBIT 11.0 User Documentation

The multisweep algorithm is an addition to the regular sweeping algorithms, and is accessed by specifying scheme sweep
and assigning multiple surfaces in the target surface list. In addition, the autoscheme selection algorithm may, also,
assign some volumes to be multiswept.

As part of the multisweep process, CUBIT may automatically generate virtual geometric entities (curve or surface
partitions). These virtual definitions will remain after multisweep is completed. The new virtual entities can be used on
adjacent volumes for decomposing and aligning the mesh. Changes made to the geometry during multisweep can be
removed (and the mesh left in place) with the "multisweep remove" command, the virtual geometry will not be saved with
it. To remove the newly created virtual geometry, the following command may be used:

Multisweep Volume <range> Remove

Because the multisweep algorithm may alter some of the surface geometry on the volume, it is generally a good idea to
attempt to mesh the multisweep volumes first before meshing any other volumes. Also note that this virtual geometry
modification may also require some additional scheme selection and interval matching on adjoining volumes.

Smoothing Swept Meshes

Swept meshes are created by projecting points between the source and target surfaces using affine transformations and
then connecting them to form hexahedra. If the sweeper generates the target mesh, the source surface is first projected to
the target surface by an affine transformation and smoothed using a weighted Winslow smoother. To ensure adequate
mesh quality, optional smoothing schemes are available to reposition the interior nodes. The sweep tool permits five types
of smoothing that are set with the following command prior to meshing a volume whose mesh scheme is sweep:

Volume <range> Sweep Smooth [AUTO|off|linear|residual|winslow]

Linear: If this option is selected, no layer smoothing is performed. The node positions are determined strictly by the affine
transformation from the previous layer. Good quality swept meshes can be constructed using “linear” provided the volume
geometry and meshed linking surfaces permit the volume mesh to be created by a translation, scaling, and/or rotation of
the source mesh. Volumes for which this is nearly true may also produce acceptable quality with “linear”. As one would
expect, this option generates swept meshes more quickly than the other sweep smooth options. This option is rarely
needed since the next option produces better results with little time penalty.

Off: The “off” option does minimal smoothing of the interior nodes. Affine transformations are used to project the source
and target surfaces to the middle surface of the volume. The position of the middle surface nodes is the average of the
projected nodes from the source and target surfaces. The error in projecting from source and target is computed, and this
error is linearly distributed back to the source and target. This method is referred to as “smart linear” in Cubit.

Residual: The “residual” method is often used for meshing volumes that cannot be swept with the “smart linear” method.
It tends to produce better quality meshes than the “smart linear” method while running faster than the Winslow-based
smoother. The sweeping algorithm uses an affine transformation to calculate the interior nodes’ positions, but the mesh
on the linking surface determines the positions of the nodes on the boundary of the layer. For the “residual” method,
CUBIT calculates corrective adjustments for interior nodes using the “residuals” from boundary nodes. The “residual” is
defined as the distance between the boundary node’s position (as determined by the surface mesh) and the boundary
node’s ideal position (as determined by the affine transformation of the previous layer). Cubit computes the residual
forward from the source and backward from the target to get best the possible node position.

Winslow: Smooth scheme “winslow” smooths each layer using a weighted, elliptic smoother. The weights are computed
from the source mesh; they help maintain any biased spacing that occurs on the source mesh. For example, one might
want to use the “winslow” option if the source was a biased mesh that was created using scheme circle. The biasing of the
outer elements of the source mesh may be destroyed if one of the other smooth options is used. The interior nodes are
initially place using the residual method.

AUTO: This is the default option for the sweep smooth command. Smooth scheme “auto” causes the Sweeper to
automatically choose between “off” (smart linear) and “residual.” Auto will choose “off” if the layer needs little or no
smoothing or “residual” if it needs smoothing. Scheme “auto” does not guarantee that no negative Jacobians are
produced. This option produces acceptable results in most cases. If it fails to produce a quality mesh, then choose one of
the other sweep smooth options.

The “sweep smooth” command cannot be used except in conjunction with mesh sweeping.

If none of these smooth schemes result in adequate mesh quality, one can consider trying one of the volume smoothing
schemes such as condition number or mean ratio.

Users who do not wish to experiment with these five options until they obtain adequate mesh quality are also encouraged
to consider the autosmooth options.

Smoothing on volumes that use the multisweep algorithm can be controlled by the following command:

253

CUBIT 11.0 User Documentation

[set] Multisweep Smoothing {ON|off}
Some helpful hints in using sweep

1. Sweep runs faster if "sweep smooth" is off. If the geometry/surface mesh permits translation, rotation, or scaling
then no smoothing should be needed.

2. The source and linking surfaces of the volume will be automatically meshed if the user has not already meshed
them prior to meshing the volume with sweep. It is important to have high quality meshes on the linking
surfaces that are synchronized with one another to that sweep can succeed. For example, if the geometry
suggests translation as the appropriate technique, a translated mesh will still not result from sweep unless the
meshes on the volume surfaces are set up accordingly. If there are bad quadrilaterals on the surface meshes,
sweep automatically aborts.

3. The target may be meshed by the user or that task may be left to sweep. If the target surface is meshed prior to
invoking sweep, then the target mesh must be topologically equivalent to the set of source surface meshes.

4. Biasing of the curve meshes in the direction of the sweep is preserved by the sweep. Biasing of the source
mesh boundary is not preserved under a sweep. To accomplish the latter, the user must bias the target surface
boundary.

5. The most common error message generated by sweep reads "Target partially reached. Check intervals on
Linking Surfaces." The error-trap that provokes this message is quite general and may occur for a number of
reasons, not necessarily the reason given. One of the most frequent causes for this message is a geometry with
a thru-hole with the linking surfaces having a different number of intervals on the inside vs. the outside of the
volume.

6. If either or both the source and/or target surfaces are omitted from the scheme setting command, CUBIT wiill
determine source and target surfaces (See Automatic Scheme Selection). Sweeping can be further automated
using the "sweep groups" command.

7. Limitations: Not all geometries are sweepable. Even some that appear sweepable may not be, depending on
the linking surface meshes. Highly curved source and target surfaces may not be meshable with the current
sweep algorithm.

Autosmooth

When creating large meshes, or doing meshing of assemblies, often a greater amount of automation is desired. With this
object in mind, the autosmoothing command was added to perform the same meshing process that is typically done by a
user on each volume of an assembly. The steps for completing a mesh on an assembly of volumes typically follows the
rough outline:

1. Generate the swept mesh without using any sweep smooth options. Check the quality of the resulting mesh. If
the quality is poor, delete the mesh and proceed to step 2.

2. Generate the swept mesh using the sweep smooth option winslow. Check the quality of the resulting mesh. If
the quality is poor, continue with step 3.

3. Smooth the mesh on the target surfaces, then use the condition number smoother to improve the quality of the
volume elements. Check the resulting quality.

The autosmooth command is an attempt to automate this process to reduce the amount of user interaction required
during meshing. When autosmooth is turned on, the outline above is followed until a reasonable quality mesh is produced.
If step 3 is completed above without producing a quality mesh, then the user is required to further decompose the model,
or choose a different meshing scheme.

The following is the command syntax for activating autosmoothing:

Volume {Default|<range>} Autosmooth {OFF|on}

Volume <range> Autosmooth Target {OFF|on}
The default option for this command is set to off, simply to decrease the potential amount of time that the user might
experience when performing test meshes. Setting the volume default option in the .cubit initialization file will force all

sweeping operations in CUBIT to go through the steps outlined above. Optionally, you can enable this for specific
volumes only.

254

CUBIT 11.0 User Documentation

Grouping Sweepable Volumes

Swept meshing relies on the constraint that the source and target meshes are topologically identical or the target surface
is unmeshed. This results in there being dependencies between swept volumes connected through non-manifold
surfaces; these dependencies must be satisfied before the group of volumes can be meshed successfully. For example, if
the model was a series of connected cylinders, the proper way to mesh the model would be to sweep each volume
starting at the top (or bottom) and continuing through each successive connected volume.
With larger models and with models that contain volumes that require many source surfaces, the process of determining
the correct sweeping ordering becomes tedious. The sweep grouping capability computes these dependencies and puts
the volumes into groups, in an order which represents those dependencies. The volumes are meshed in the correct order
when the resulting group is meshed.
To compute the sweep dependencies, use the command:

Group Sweep Volumes
This will create a group named "sweep_groups", which can then be meshed using the command:

Mesh sweep_groups

TetMesh

Applies to: Volumes
Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.
Syntax:
Volume <range> Scheme {TetMesh|TetINRIA}
Related Commands:
THex Volume All
Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>

Volume <volume_id> Tetmesh Respect Clear

Volume <volume_id> Tetmesh Respect File '<filename>'

Volume <volume_id> Tetmesh Respect Location (options)

Discussion:

The TetMesh scheme fills and arbitrary three-dimensional volume with tetrahedral elements. The surfaces are first
triangulated with one of the triangle schemes (TriMesh or TriAdvance) or a quadrilateral scheme with the quadrilaterals
being split into two triangles.

The Simulog/INRIA tet-mesher is included in CUBIT. This is a robust and fast tetrahedral mesher developed in France at
INRIA and distributed by Simulog. Figure 1 shows a volume filled with tetrahedra by this algorithm. You can specify this
scheme for a volume by giving either scheme TetMesh or TetINRIA, as these two scheme names are synonymous.

Using tets as the basis of an unstructured hexahedral mesh

Tet meshing can be used to generate hexahedral meshes using the THex command. Each of the tetrahedron can be
converted into 4 hexes, producing a fully conformal hexahedral mesh, albeit of poorer quality. These meshes can often be
used in codes that are less sensitive to mesh quality and mesh directionality. The THex command requires that all tets in
the model be converted to hexahedra with the same command.

255

CUBIT 11.0 User Documentation

.._.,
iy
s

s

e

=
s

14
Akia i b ATATAD T
eSO iEss ST avay.t
e S S S ot
s TG S s
o |.‘|,'|_ bl e l'r T ._..--..--i,'l
e A . .“ﬂ.] s f‘ ¥,

Figure 1. Tetrahedral Mesh generated with the Tetlnria scheme. Surface meshing was performed with the TriAdvance
scheme.

Conforming the tetmesh to internal features

In some cases it is necessary for the finite element mesh to conform to internal features of the model. The tetmesh
scheme provides this capability provided the tetmesh respect command has been previously issued to define the features
that will be respected.

Volume <volume_id> Tetmesh Respect {Face|Tri|[Edge|Node} <range>
The tetmesh respect command allows the user to specify mesh entities that will be part of a tetrahedral mesh. These
faces, triangles, edges, or nodes are inside the volume since all surface mesh features will appear in the final tetrahedral

mesh by default. These mesh entities specified to be respected can be generated from other meshing commands on free
vertices, curves, or surfaces.

8

o

256

CUBIT 11.0 User Documentation

Figure 2. Example of using tetmesh respect to ensure node 9 is captured in the tetmesh.

For example, Figure 2 is an example of using the tetmesh respect command to enforce a node at the center of a cube.
Node 9 in this example was generated by first creating a free vertex at the center location and meshing the vertex. (mesh
vertex 9). The following commands would then be used to generate the tetmesh that respected node 9.

volume 1 scheme tetmesh

tetmesh respect node 9

mesh volume 1
The tetmesh respect command can also be used to enforce multiple mesh entities. To accomplish this, the tetmesh
respect command may be issued multiple times. For example, If node12 and a triangle 2 inside volume 3 was to appear in
the volumetric mesh, the following commands could be used:

volume 3 scheme tetmesh

volume 3 tetmesh respect node 12

volume 3 tetmesh respect tri 2

mesh volume 1

Unlike the tetmesh respect command described above, the tetmesh respect file and tetmesh respect location
commands do not require underlying geometry.

Volume <volume_id> Tetmesh Respect File '<filename>"'
Volume <volume_id> Tetmesh Respect Location (options)

These two commands create mesh data that only the tetmesher knows about. Thus if you want to respect a point at (1.0,
0.0, -1.0) in your model, you need only enter the command

volume 1 tetmesh respect location 10 -1
This is much simplier than creating the vertex, meshing it, and then respecting it.
If you have many points that must be respected, then you may wish to use the file version of the command. First generate
a file with all of the points, edges, and triangles that you want respected. The format of the file is the format used by the
facet file. Now, use the following command to respect all of the information in the file for the given volume.

volume 2 tetmesh respect file 'my_points.facet'
Finally, we need a command to remove the respected data from an entity.

Volume <volume_id> Tetmesh Respect Clear
The tetmesh respect clear command is the only way to remove respected data from a volume without deleting the volume.
Unfortunately, it removes all respected data from the volume. Therefore, if you have a lot of data to be respected, it is best

to put it in a file that you may edit or keep journal file that you may also edit. Rereading the file is much easier than
retyping all of the data.

Tetprimitive

Applies to: Volumes

Summary: Meshes a 4 "sided" object with hexahedral elements using the standard tetrahedron primitive.

Syntax:
Volume <range> Scheme Tetprimitive [Combine Surface <range>] [Combine Surface <range>]
[Combine Surface <range>] [Combine Surface <range>]

Discussion:

The tetprimitive scheme is used to create a hexahedral mesh in a volume which fits the shape of a tetrahedral primitive.
The Tetprimitive scheme assumes that each of the four surfaces have been meshed with the triprimitive, or similar,
meshing scheme. If more than four surfaces form the tetrahedron geometry, the surfaces forming a logical side can be
combined using the combine option.

257

CUBIT 11.0 User Documentation

Figure 1. Sphere octant hex meshed with scheme Tetprimitive, surfaces meshed using scheme Triprimitive

TriDelaunay

Applies to: Surfaces
Summary: Automatically meshes planar surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriDelaunay
Discussion:
The scheme TriDelaunay is an alternative triangle meshing scheme to the TriAdvance and QTri schemes. This algorithm
uses the Delaunay [Watson,81] criterion for connecting nodes into triangles. It also utilizes the Guaranteed Quality
[Ruppert,92] approach for inserting nodes into the mesh. Because of the inherent nature of the Delaunay criterion, this
scheme is limited only to planar surfaces.

TriDelaunay can also utilize a sizing function if one is defined for the surface.

Note that if an attempt is made to mesh a surface that is non-planar, a error will be generated. Use scheme TriMesh,
TriAdvance or QTri to mesh non-planar surfaces.

TriMap

Applies to: Surfaces
Summary: Places triangle elements at some vertices, and map meshes the remaining surface.
Syntax:

Surface <range> Scheme Trimap

Related Commands:

258

CUBIT 11.0 User Documentation

Surface <range> Vertex <range> Type {triangle|notriangle}
Discussion:
Some surfaces contain bounding curves which meet at a very acute angle. Meshing these surfaces with an all-
quadrilateral mesh will result in a very skewed quad to resolve that angle. In some cases, this is a worse result than
simply placing a triangular element to resolve that angle. This scheme resolves this situation by placing a triangular
element in these tight corners, and filling the remainder of the surface with a mapped mesh.

The algorithm can automatically compute whether a triangular element is necessary, along with where to place that
element. To override the choice of where triangular elements are used, the following command can be issued:

Surface <range> Vertex <range> Type {triangle|notriangle}

TriMesh, TriAdvance

Applies to: Surfaces
Summary: Automatically meshes surface geometry with triangle elements.
Syntax:
Surface <range> Scheme {TriMesh|TriAdvance}
Discussion:

The triangle meshing schemes fill an arbitrary surface with triangle elements. Two algorithms are available for this
purpose.

1. The scheme TriAdvance is an advancing front algorithm which allows holes in the surface and transitions between
dissimilar element sizes. It can use a sizing function like the pave scheme if one is defined for the surface. Future

development will add hard lines to this scheme's capabilities. You specify this scheme for a surface by giving the
command:

Surface <range> Scheme TriAdvance
2. The scheme TriMesh automatically switches between the TriAdvance and the QTri schemes. First, it tries the
TriAdvance scheme; if that fails, it tries the QTri scheme. The QTri scheme first paves the surface and then cuts the
quadrilateral elements in half to form triangles. Figure 2 shows an example of a mesh created with the QTri method.

You specify this scheme for a surface by giving the command:

Surface <range> Scheme TriMesh

L1
RERS
::'.E: Ef_,'r#n. L)
T Ch .l.'r.-"'l.
T
RAEEREEE
ks

Figure 1. Triangle mesh generated with scheme TriAdvance

259

CUBIT 11.0 User Documentation

Figure 2. Triangle mesh generated with QTri scheme

TriPave

Applies to: Surface
Summary: Places triangle elements at some vertices, and paves the remaining surface.
Syntax:
Surface <range> Scheme Tripave
Related Commands:
Surface <range> Vertex <range> Type {triangle|notriangle}
Discussion:

Similar to the trimap algorithm, but uses paving instead of mapping to fill the remainder of the surface with quadrilaterals.
Applies to: Surfaces
Summary: Produces a triangle-primitive mesh for a surface with three logical sides
Syntax:

Surface <range> Scheme Triprimitive [SMOOTH | nosmoothing]
Discussion:
The triprimitive scheme indicates that the region should be meshed as a triangle. A surface may use the triprimitive
scheme if three "natural”, or obvious, corners of the surface can be identified. For instance, the surface of a sphere octant
(shown in the figure below) is handled nicely by the triprimitive scheme. The algorithm requires that there be at least 6
intervals (2 per side) specified on the curves representing the perimeter of the surface and that the sum of the intervals on
any two of the triangle's sides be at least two greater than the number of intervals on the remaining side. The following
figure illustrates a triprimitive mesh on a 3D surface.
By default, the triprimitive algorithm will smooth the mesh with an iterative smoothing scheme. This smoothing can be

disabled by using the "nosmoothing" option with this command. The quality of the mesh will often be significantly
degraded by disabling smoothing, but in certain cases the unsmoothed mesh may be preferred.

260

CUBIT 11.0 User Documentation

Figure 1. Surfaces meshed with scheme Triprimitive

Radialmesh

Summary: Creates a free cylindrical mesh with precise node locations based on input radii, angles, and offsets, then
creates mesh-based geometry to fit the mesh.

Syntax:

Create Radialmesh \
numZ <val>[span <val>] \
zblock 1 [<offset val>] \
{interval|bias|fraction|first size} <val>\
[{interval|bias|fraction]last size} <val>] \
zblock 2 [<offset val>] \
{interval|bias|fraction|first size} <val>\
[{interval|bias|fraction]last size} <val>] \
.. numzZ\

numR <val> {trisection|initial radius<val>}\
rblock 1 <offset radius val>\
{interval|bias|fraction|first size} <val>\
[{interval|bias|fraction]last size} <val>] \
rblock 2 <offset radius val>\
{interval|bias|fraction|first size} <val>\
[{interval|bias|fraction]last size} <val>] \
.. NUMR\

numA <val> [full360] [span <val>] \

ablock 1 [<offset angle val>] \
{interval|bias|fraction|first angle} <val>\
[{interval|bias|fraction]|last angle} <val>] \

ablock 2 [<offset angle val>] \
{interval|bias|fraction|first angle} <val>\
[{interval|bias|fraction|last angle} <val>] \

... NUMA

261

CUBIT 11.0 User Documentation

Discussion:

The purpose of the radialmesh command is to create a cylindrical mesh with precise node locations. Unlike all other
meshing commands which place nodes using smoothing algorithms to optimize element quality, node locations for the
radialmesh command are calculated based on the input radii, angles, and offsets. In addition, the radialmesh command
does not mesh existing geometry. Rather, it creates a mesh based on the input parameters, after which a mesh-based
geometry is created to fit the free mesh.

The radialmesh command requires input for the 3 coordinate directions (Z, radial, angular). The number of blocks in each
direction is specified with the numz, numR, and numA values in the command. Each block forms a new volume in the final
mesh. All bodies in the mesh are merged to form a conformal mesh between blocks.

The Radialmesh command can create meshes which span any angle greater than 0.0 up to 360 degrees. In addition,
meshes can model either a tri-section (see Figure 1), or a non-trisection mesh (see Figure 2).

Figure 2. Non-tri-section Radialmesh

The command to generate the mesh in Figure 1 is:

create radialmesh \
numZ 1 zblock 1 1 interval 5\
numR 3 trisection rblock 1 2 interval 5\
rblock 2 3interval 5\
rblock 3 4 interval 5\
numA 1 span 90 ablock 1 interval 10

262

CUBIT 11.0 User Documentation

The command to generate the mesh in Figure 2 is:

create radialmesh \
numZ 1 zblock 1 1 interval 5\
numR 1initial radius 3 rblock 1 4 interval 5\
numA 1 span 90 ablock 1interval 10

A mesh can span an entire 360 degrees by using the “full360” keyword. For example, the mesh in Figure 3 was generated
with the following command:

create radialmesh numZ 1 zblock 1 1 interval 5\

numR 3 trisection rblock 1 1 interval 5\
rblock 2 2 interval 5\
rblock 3 3interval 5\

numA 5 full360 span ablock 1 interval 5\
ablock 2 interval 5\
ablock 3 interval 5\
ablock 4 interval 5

Figure 4. Radialmesh using full360 option

After the mesh is generated, the radialmesh command fits the mesh with mesh based geometry. The surfaces created to
fit the mesh are given special names according to their location on the geometry. To see the names of the surfaces, issue
the command label surface name after creating a radialmesh. Also, if you create a tri-section mesh, the edges on the
center axis are given names. To see these names issue the command label curve name after creating a trisection
Radialmesh.

The user can control the number of intervals and the spacing of these intervals using the optional parameters in each
rblock, zblock and ablock. There are 11 combinations that these can be combined as listed below:

e Interval Only- Example: "interval 5." The block will be meshed with 5 equally spaced intervals.

e First Size Only- Example: “first size 2.5.” The block will be meshed with intervals of approximately 2.5 in length.
The total number of intervals is internally calculated and depends on the overall block length.

® Fraction Only- Example: “fraction 0.3333.” The block will be meshed with intervals approximately
0.3333*overall block length.

263

CUBIT 11.0 User Documentation

Interval and Bias- Example: “interval 5 bias 1.5.” There will be 5 intervals on the block, which each interval
being 1.5 times the previous one. The length of each interval is calculated internally.

Interval and Fraction- Example: “interval 5 fraction 0.25.” There will be 5 intervals on the block, the first being
.25 of the length of the block with the remaining decreasing in size.

Interval and First Size- Example: “interval 5 first size 0.2.” There will be 5 intervals on the block, the first being
0.2 in length. The remaining intervals will increase or decrease to fill the blocks length.

First Size and Last Size- Example: “first size 0.2 last size 0.4.” The first interval will be 0.2 in length. The last
interval will be 0.4 in length. The total number of intervals is internally calculated to allow for transition between
the 2 specified sizes.

First Size and Bias- Example “first size 0.2 bias 0.85.” The first interval will be 0.2 in length and the remaining
intervals will scale by a factor of 0.85 from one to the next until the block is filled. The total number of intervals is
internally calculated and depends on the overall block length.

Fraction and Bias- Example “fraction 0.25 bias 1.25.” The first interval will be 0.25 of the overall block length
and the remaining intervals will scale by a factor of 1.25 from one to the next until the block is filled. The total
number of intervals is internally calculated and depends on the overall block length.

Interval and Last Size- Example: “last size 1.5 interval 5.” The last interval will be 1.5 in length. The remaining
intervals will scale up or down to fit 5 intervals in the block.

Last Size and Bias- Example: “last size 2.0 bias 1.1.” The last interval will be 2.0 in length. The remaining
intervals will scale by 1.1 until the block is filled. The total number of intervals is internally calculated and
depends on the overall block length.

Figure 5 shows an example of a bias spaced mesh with the following command:

264

create radialmesh numzZ 2 zblock 1 1 first size 0.2\
zblock 2 10 first size 0.2 last size 1.0\
numR 3 trisection rblock 1 1 interval 5\
rblock 2 2 first size .25\
rblock 3 5 first size .25 bias 2.0\
numA 1 span 90 ablock 1 interval 5

CUBIT 11.0 User Documentation

x [T T T N R R AR

,,H Vo T TR R R R R T

i L W T W T W R

P W N W T

R TR
i

LY
R A N

Dice

Applies to: Curves,

ype.

ntities of the same t

splitting coarse quads and hexes into sm

algorithm for

efinement

|Surface|Volume} <range> Scheme Dice

{Curve

Related Commands:

265

CUBIT 11.0 User Documentation

{Curve|Surface|Volume} <range>

Initialize Dicer{Curve|Surface|Volume} <range>

DicerSheet Interval <interval>{Curve|Surface|Volume} <range>

DicerSheet Interval Size <size>DicerSheet <id> interval <interval>

DicerSheet Default Interval <interval>

Replace Mesh {Surface|Volume|Group} <range>

Set Node Constraint [ON|off|Delete Fine Mesh {Volume|Surface|Curve} <range> [Propagate]

DicerSheet <id> Bias <value> Start Node <id>

Refining a Mesh with Dicing

The commands used to dice a mesh are very similar to those used to generate a mesh with other meshing schemes. To
refine a mesh with dicing, follow these steps:

=

Set the mesh scheme to Dice for each entity to be diced, using a command such as Volume 1 Scheme Dice.

2. Setthe interval on the entity, using a command such as Volume 1 Interval 3. This will set the refinement interval
for the specified volumes. For a definition of a refinement interval , see the detailed discussion below.

3. Mesh the entity, using a command such as Mesh Volume 1. This will generate a fine mesh, but will not apply it
to the geometry (the view of the mesh in the graphics window will not change).

4. Replace the course mesh with the fine mesh, using a command such as Replace Mesh Volume 1. This will

apply the fine mesh to the geometry, and will delete the previously existing coarse mesh. The changes in the

mesh will be visible in graphics window.

Detailed Discussion:

Occasionally, it is more convenient to mesh a volume in two stages, first generating a coarse mesh, and then converting
the coarse mesh to a fine mesh. The method used to convert a coarse hex mesh to a fine hex mesh is known as dicing.

Dicing (Melander, 97) replaces each hex in a coarse mesh with a grid of smaller hexes. The grid is generated by cutting
the hex any number of times along each of its three primary axes. The number of fine hexes in the grid depends on the
number of cuts in each direction. The number of cuts along any of the hex's three primary axes is known as the
refinement interval of that axis (also known as the dicersheet interval). For example, a hex with a refinement interval of 2
in each direction will be replaced by a grid of 8 smaller elements. A simple example is shown in the following figure.

& — ’ A . —
¥ -~ ! "'_;'I_w' T~ i T
‘)’(K /) ll!' Er"..-'.l."f -'ﬁ_:-}rr';—\""
K - ; ;;'-'?77‘7":"7'5:.-—‘;:_-
T EE i

Simple Dice Example

Dicing may also be performed on a quad mesh. The result is a grid of quads replacing each coarse quad element.

266

CUBIT 11.0 User Documentation

In order for the resulting fine mesh to be conformal, groups of coarse mesh edges must have the same refinement
interval. Each group of dependent edges is known as a dicersheet. Dicersheets often include edges from several surfaces
and volumes, so dependencies may propagate throughout the mesh. Dicersheets are maintained automatically and
enforce refinement interval dependencies.

Extended Dicing Commands

In addition to the steps described above, an alternative set "extended" commands may be used to dice a mesh. These
steps correspond more closely to the internal process CUBIT uses to refine the mesh.

1. Initialize the dicer

Before dicing may be carried out, the dicer must first be initialized. This will create the necessary internal data
needed to enforce constraints and correctly generate and store the fine mesh. To initialize the dicer for a given
entity, use the command <Entity_List> Initialize Dicer. This command will cause all appropriate internal data to
be generated. If there are dependencies between any of the specified entities, or any entity for which the dicer
has already been initialized, those dependencies will automatically be reflected in the internal data via dicer
sheets.

2. Set refinement intervals

After the dicer has been initialized, refinement intervals should be set. This will determine the number of fine
edges replacing each coarse edge in a given dicer sheet, ultimately determining the number of fine elements
that will replace each coarse element. The refinement interval must be a positive integer, 1 or greater. A
refinement interval of 1 will leave the coarse edges unchanged, replacing 1 coarse edge with 1 fine edge.

Refinement intervals may be set on a geometric entity, on individual dicer sheets, or using a default value for all
dicer sheets, using the commands:

{Volume|Surface|Curve} <range> DicerSheet Interval <interval>
DicerSheet <id> Interval <interval>
DicerSheet Default Interval <interval>

The default dicersheet interval is two.

It is also possible to set a dicersheet interval size by using the command:
{Volume|Surface|Curve} <range> DicerSheet Interval Size <size>

One additional command allows biasing of dicersheets. A start node id, which must be found in the dicersheet,
is input to determine from which side of the dicersheet to begin the bias.

DicerSheet <id> Bias <value> Start Node <id>
3. Perform the dicing

Initializing the dicer for an entity will set the mesh scheme for that entity to Dice. Once the scheme has been
set, the coarse mesh can be used to create the fine mesh using the command

Mesh {Volume|Surface|Curve} <range>

The fine mesh will be generated and will exist in memory, but at this point will not be applied to the entity that
was diced.

4. Replace the coarse mesh with the fine mesh.

Once the fine mesh exists in memory, you may replace the coarse mesh with the fine mesh with the command

Replace Mesh {Volume|Surface} <range>

267

CUBIT 11.0 User Documentation

This command works only with surfaces and volumes. Each coarse element will be replaced with its grid of fine
elements. As a result, the mesh on any child entities will also be replaced. In other words, replacing the mesh of
a volume will also replace the mesh on each of that volume's surfaces and curves.

NOTE: You may find it difficult to view the fine mesh, until after you have completed the replace mesh step.

As a coarse mesh is replaced, any coarse elements that are still needed by another portion of the mesh will not
be destroyed. For example, assume that two volumes have been merged and shared a surface. If both volumes
are meshed, and the mesh on one volume is then replaced, the shared coarse surface mesh will still exist
because it is needed by the other volume. At this point, the surface mesh is in an ambiguous state,
simultaneously containing coarse and fine elements. If the second volume is then diced and its mesh is

replaced, the coarse mesh on the shared surface will then be deleted and the fine mesh will be conformal
between the two volumes.

Constraining Nodes to Geometry:

The user can control whether refinement nodes of surface and curve meshes get moved to the geometry, or whether their
positions remain as a straight-line interpolation between coarse nodes, via the following command:

Set Node Constraint {on]|off}

If Node Constraint is on, which is the default, then nodes are constrained to lie on the geometry.

Deleting a Fine Mesh

The fine nodes generated by the Dicer may be deleted using the command

Delete Fine Mesh {geom_list} [Propagate]
This command only works before using the Replace Mesh command. Any fine mesh entities that rely on the deleted fine
nodes are also deleted. For example, if the fine nodes on a surface are deleted, the fine mesh of any attached volume is

deleted along with the nodes on the surface. If the optional Propagate keyword is used, the fine mesh will be deleted from
any child entities as well.

Interaction with Dicer Sheets

Dicer sheets can be drawn, picked, highlighted, and listed, like other entities in the CUBIT model.

HTet

Applies to: Volumes
Summary: Converts an existing hex mesh into a conforming tetrahedral mesh.
Syntax:
HTet Volume <range> {UNSTRUCTURED | structured}
Discussion:
Unlike other meshing schemes in this section, The HTet command requires an existing hexahedral mesh on which to
operate. Rather than setting a meshing scheme for use with the mesh command, the HTet command works after an initial
hex mesh has been generated.
Two methods for decomposing a hex mesh into tetrahedra are available. Set the method to be used with the optional

arguments unstructured and structured. The unstructured method is the default. Figure 1 shows the difference between
the two methods:

268

CUBIT 11.0 User Documentation

Figure 1. Left: Unstructured method creates 6 tets per hex. Right: Structured method creates 28 tets per hex

Unstructured

This method creates 6 tetrahedra for every hexahedra. No new nodes will be generated. The orientation of the 6
hexahedra will be based upon the element node humbering, as a result orientations may change if node numbering
changes. This method is referred to as unstructured because the number of tetrahedra adjacent each node will be
relatively arbitrary in the final mesh. Tetrahedral element quality is generally sufficient for most applications, however the
user may want to verify quality before performing analysis.

Structured

With this approach, 28 tetrahedra are generated for every hexahedra in the mesh. This method adds a node to each face
of the hex and one to the interior. Although this method generates significantly more elements, the orientation and quality
of the resulting tetrahedra are more consistent. Each previously existing interior node in the mesh will have the same
number of adjacent tetrahedra.

QTri

Applies to: Surfaces

Summary: Meshes surfaces using a quadrilateral scheme, then converts the quadrilateral elements into triangles.

Syntax:
Surface <range> Scheme Qtri [Base Scheme quad_scheme>]
QTri Surface <range>
Set qtri split [2]4]

Discussion:

QTri is used to mesh surfaces with triangular elements. The surface is, first, meshed with the quadrilateral scheme, and,
then, the generated quads are split along a diagonal to produce triangles. The first command listed above sets the
meshing scheme on a surface to QTri. The second form sets the scheme and generates the mesh in a single step.

269

CUBIT 11.0 User Documentation

In the first command, the user has the option of specifying the underlying quadrilateral meshing scheme using the base
scheme <quad_scheme> option. If no base scheme is specified, CUBIT will automatically select a scheme. For non-
periodic surfaces, the base scheme will be set to scheme pave. For periodic surfaces, the base scheme will be set to
scheme map.

Generally, the second command, Qtri Surface <range>, is used on surfaces that have already been meshed with
quadrilaterals. If, however, this command is used on a surface that has not been meshed, a base scheme will
automatically be selected using CUBIT’s auto-scheme capabilities. The user can over-ride this selection by specifying a
quadrilateral meshing scheme prior to using the gtri command (using the Surface <range> Scheme <quad_scheme>
command).

In addition to the default 2 tris per quad, the set gtri split command may alter the QTri scheme so that it will split the quad
into 4 triangles per quad. Where the 4 option is used, an additional mesh node is placed at the centroid of each quad.

Also, the QTri scheme is used in the TriMesh command as a backup to the TriAdvance triangle meshing scheme.

Figure 1. Surface meshed with scheme QTri

THex

Applies to: Volumes
Summary: Converts a tetrahedral mesh into a hexahedral mesh.
Syntax:
THex Volume <range>
Discussion:

The THex command splits each tetrahedral element in a volume into four hexahedral elements, as shown in Figure 1.
This is done by splitting each edge and face at its midpoint, and then forming connections to the center of the tet.

When THexing merged volumes, all of the volumes must be THexed at the same time, in a single command. Otherwise,
meshes on shared surfaces will be invalid. An example of the THex algorithm is shown in Figure 2.

270

CUBIT 11.0 User Documentation

Figure 1. Conversion of a tetrahedron to four hexahedra, as performed by the THex algorithm.

271

CUBIT 11.0 User Documentation

Figure 2. A cylinder before and after the THex algorithm is applied.

TQuad

Applies to: Surfaces
Summary: Converts a triangular surface mesh into a quadrilateral mesh.
Syntax:
TQuad Surface <range>
Discussion:
The TQuad command splits each triangular surface element in four quadrilateral elements, as shown in Figure 1. This is
done by splitting each edge at its midpoint, and then forming connections to the center of the triangle. The result is the
same as using the THex algorithm, but only applies to surfaces. In general it is better to use a mapped or paved mesh to

generate quadrilateral surface meshes. However, the TQuad scheme may be useful for converting facet-based triangular
meshes to quadrilateral meshes when remeshing is not possible.

272

CUBIT 11.0 User Documentation

Figure 1. A triangle split into 3 quads using the TQuad scheme

Copying a Mesh

Applies to: Curves, Surfaces, Volumes

Summary: Copies the mesh from one entity to another

Syntax:

Curve <range> Scheme Copy source Curve <range> [Source Percent [<percentage> | auto]]
[Source [combine|SEPARATE]] [Target [combine|SEPARATE]] [Source Vertex <id_range>]
[Target Vertex <id_range>]]

Surface <range> Scheme Copy [Source Surface] <id> [[Source Curve <id> Target Curve <id>]
[Source Vertex <id> Target Vertex <id>] [Nosmoothing]

Volume <range> Scheme Copy [Source Volume] <id> [[Source Surface <id> Target Surface
<id>] [Source Curve <id> Target Curve <id>] [Source Vertex <id> Target Vertex
<id>]][Nosmoothing]

Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range> [Source Node <starting
node id> <ending node id>] [Source Percent [<percentage>|auto]] [Source
[combine|SEPARATE]] [Target [combine|SEPARATE]] [Source Vertex <id_range>] [Target
Vertex <id_range>]

Copy Mesh Surface <surface_id> Onto Surface <surface_id> [Source Face <id_range>]
[Source Node <id> Target Node <id>] [Source Edge <id> Target Edge <id>] [Source Vertex
<id> Target Vertex <id>] [Source Curve <id> Target Curve <id>] [Nosmoothing]

Copy Mesh Volume <volume_id> Onto Volume <volume_id> [Source Vertex <vertex_id>
Target Vertex <vertex_id> [Source Curve <curve_id> Target Curve <curve_id>] [Nosmoothing]

Related Commands:

Set Morph Smooth {on | off}

Discussion:

273

CUBIT 11.0 User Documentation

If the user desires to copy the mesh from a surface, volume, curve, or set of curves that has already been meshed, the
copy mesh scheme can be used. Note that this scheme can be set before the source entity has been meshed; the source
entity will be meshed automatically, if necessary, before the mesh is copied to the target entity. The user has the option of
providing orientation data to specify how to orient the source mesh on the target entity. For example, when copying a
curve mesh, the user can specify which vertex on the source (the source vertex) gets copied to which vertex on the target
(the target vertex). If you need to reference mesh entities for the copy, use the Copy Mesh commands. If no orientation
data is specified, or if the data is insufficient to completely determine the orientation on the target entity, the copy
algorithm will attempt to determine the remaining orientation data automatically. If conflicting, or inappropriate, orientation
data is given, the algorithm attempts to discard enough information to arrive at a proper mesh orientation.

Curve mesh copying has certain options that allow the copying of just a section of the source curves' mesh. These options
are accessed through the extra keyword options. The percent option allows the user to specify that a certain percentage
of the source mesh be copied--in this context the auto keyword means that the percentage will be calculated based on the
ratio of lengths of the source and target curves. The combine and separate keywords relate to how the command line
options are interpreted. If the user wishes to specify a group of target curves that will each receive an identical copy of a
source mesh, then the target separate option should be used (this is the default). If, however, the user wishes the source
mesh to be spread out along the range of target curves, then the target combine option should be used. The source
curves are treated in a similar fashion.

Volume mesh copying depends on the surface copying scheme. Because of this, the target volume must not have any of
its surfaces meshed already.

Because of how the copying algorithm works, the target mesh might not be an exact copy of the source mesh. This
happens because of the effects of smoothing. If an exact copy is required, there are two possible solutions. The first
option is useful when the source and target surfaces or volumes are exact matches. If this criterion is met, the user may
specify the Nosmoothing option. That will disable any smoothing of the mesh on the target surface and thereby providing
an exact copy of the mesh. The second option is useful if the source and target surfaces are not identical. In this case the

user may set the morph smoothing flag on, which will activate a special smoother that will match up the meshes as closely
as possible.

Mirroring a Mesh

Applies to: Surfaces
Summary: Mirrors the mesh from one surface to another
Syntax:

Surface <range> Scheme Mirror [Source Surface <id>[Source Vertex <id> Target Vertex <id>]]
[Nosmoothing]

Mirror Mesh Surface <surface_id> Onto Surface <surface_id> [Source Vertex <id> Target

Vertex <id> Source Curve <id> Target Curve <id> Source Node <id> Target Node <id>]

[Nosmoothing]
Discussion:
The mirror scheme is very similar to the copy scheme. In order to understand what is changed, a discussion of the copy
command is in order. Depending on what the user enters for the copy scheme, the resulting mesh might be oriented one
of two ways. For example, if the user entered:
Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1

then the algorithm would match vertex 1 with vertex 5, but then would have to make a guess about how to match the
curves. Lacking other pertinent data, the match will be a direct match, as is shown in the following figure:

274

CUBIT 11.0 User Documentation

[
[

™~ Source Varex “*Targetvertex

Figure 1. Surface 1 copied onto surface 2

\“*Enurce Wertex M“Target Wertex

Figure 2. Surface 1 mirrored onto surface 2

This default matching can be changed by specifying more information for matching, or the user can specify scheme
mirror. The mirror scheme sets up the copying information in such a way as to reverse the default orientation of the target
mesh, as is shown in the above figure (right).

There are times when the resulting mesh may not match the original mesh exactly due to smoothing. Using the
nosmoothing option will ensure that the resulting mesh matches the original mesh exactly.

The alternate form of the command copies the mesh immediately instead of setting a scheme first. This form of the
command can also use curves and mesh entities as references.

Automatic Scheme Selection

Default Scheme Selection

Automatic Scheme Selection General Notes
Surface Auto Scheme Selection

Volume Auto Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the meshing scheme. Automatic
scheme selection is based on several constraints, some of which are controllable by the user. The algorithms to select
meshing schemes will use topological and geometric data to select the best quad or hex meshing tool. Auto scheme
selection will not select tet or tri meshing algorithms. The command to invoke automatic scheme selection is:

{geom_list} Scheme Auto

275

CUBIT 11.0 User Documentation

Specifically for surface meshing, interval specifications will affect the scheme designation. For this reason it is
recommended that the user specify intervals before calling automatic scheme selection. If the user later chooses to
change the interval assignment, it may be necessary to call scheme selection again. For example, if the user assigns a
square surface to have 4 intervals along each curve, scheme selection will choose the surface mapping algorithm.
However if the user designates opposite curves to have different intervals, scheme selection will choose paving, since this
surface and its assigned intervals will not satisfy the mapping algorithm's interval constraints. In cases where a general
interval size for a surface or volume is specified and then changed, scheme selection will not change. For example, if the
user specified an interval size of 1.0 a square 10X10 surface, scheme selection will choose mapping. If the user changes
the interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection. If a mesh density is
not specified for a surface, a size based on the smallest curve on the surface will be selected automatically.

Default Scheme Selection

If the user does not set a scheme for a particular entity and chooses to mesh the entity, CUBIT will automatically run the
auto scheme selection algorithm and attempt to set a scheme. In cases where the auto scheme selection fails to choose a
scheme, the meshing operation will fail. In this case explicit specification of the meshing scheme and/or further geometry
decomposition may be necessary.

The default scheme selection in CUBIT, unless otherwise set, will attempt to set a quadrilateral or hexahedral meshing
scheme on the entity. If tet or tri meshing will always be the desired element shape, the following command can be used:

set default element [tet|tri|HEX|QUAD|none]
Setting the default element to tet or tri will bypass the auto scheme selection and always use either the triadvance or
tetmesh schemes if the scheme has not otherwise been set by the user. The default settings of quad or hex will use the
automatic scheme selection.
Previous functionality of CUBIT used a default scheme of map and interval of 1 for all surface and volume entities. For

backwards compatibility and if this behavior is still desired, the none option may be used on the set default element
command.

Auto Scheme Selection General Notes

In general, automatic scheme selection reduces the amount of user input. If the user knows the model consists of 2.5D
meshable volumes, three commands to generate a mesh after importing or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The model shown in the following figure was meshed using these three commands (part of the model is not shown to
reveal the internal structure of the model).

276

CUBIT 11.0 User Documentation

T ;
T FT
T

o

FLH
at +'t++i*i+ﬁ;~#**

Figure 1. Non-trivial model meshed using automatic scheme selection

Scheme Firmness

Meshing schemes may be selected through three different approaches. They are: default settings, automatic scheme
selection, and user specification. These methods also affect the scheme firmness settings for surfaces and volumes.
Scheme firmness is completely analogous to interval firmness.
Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}
Scheme firmness settings can only be applied to surfaces and volumes.
This may be useful if the user is working on several different areas in the model. Once she/he is satisfied with an area's
scheme selection and doesn't want it to change, the firmness command can be given to hard set the schemes in that

area. Or, if some surfaces were hard set by the user, and the user now wants to set them through automatic scheme
selection then she/he may change the surface's scheme firmness to soft or default.

Surface Auto Scheme Selection

Surface auto scheme selection (White, 99) will choose between Pave, Submap, Triprimitive, and Map meshing schemes,
and will always result in selecting a meshing scheme due to the existence of the paving algorithm, a general surface
meshing tool (assuming the surface passes the even interval constraint).

277

CUBIT 11.0 User Documentation

Surface auto scheme selection uses an angle metric to determine the vertex type to assign to each vertex on a surface;
these vertex types are then analyzed to determine whether the surface can be mapped or submapped. Often, a surface's
meshing scheme will be selected as Pave or Triprimitive when the user would prefer the surface to be mapped or
submapped. The user can overcome this by several methods. First, the user can manually set the surface scheme for the
"fuzzy" surface. Second, the user can manually set the "vertex types" for the surface. Third, the user can increase the
angle tolerance for determining "fuzziness." The command to change scheme selection's angle tolerances is:

[Set] Scheme Auto Fuzzy [Tolerance] {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as the fuzzy tolerance, no
fuzzy tolerance checks will be calculated, and in general mapping and submapping will be chosen more often. If the user
enters 0 degrees, only surfaces that are "blocky" will be selected to be mapped or submapped, and in general paving will
be chosen more often.

Volume Auto Scheme Selection

When automatic scheme selection is called for a volume, surface scheme selection is invoked on the surfaces of the
given volume. Mesh density selections should also be specified before automatic volume scheme selection is invoked due
to the relationship of surface and volume scheme assignment.

Volume scheme selection chooses between Map, Submap and Sweep meshing schemes. Other schemes can be
assigned manually, either before or after the automatic scheme selection.

Volume scheme selection is limited to selecting schemes for 2.5D geometries, with additional tool limitations (e.g. Sweep
can currently only sweep from several sources to a single target, not multiple targets); this is due to the lack of a
completely automatic 3D hexahedral meshing algorithm. If volume scheme selection is unable to select a meshing
scheme, the mesh scheme will remain as the default and a warning will be reported to the user.

Volume scheme selection can fail to select a meshing scheme for several reasons. First, the volume may not be
mappable and not 2.5D; in this case, further decomposition of the model may be necessary. Second, volume scheme

selection may fail due to improper surface scheme selection. Volume schemes such as Map, Submap, and Sweep require
certain surface meshing schemes, as mentioned previously.

Parallel Meshing

The set parallel meshing works with the export parallel command to generate a boundary mesh suitable for sweeping with
the pCAMAL application. Currently only the Cubit sweep scheme is affected, but the mapping and submapping schemes
may be in the future. The command syntax is:

Set Parallel Meshing {on|OFF}

For now, sweeping a volume in the parallel meshing mode will only generate the exterior shell of the volume, i.e, source,
linking, and target surfaces. This shell is written to an ExoduslI file with the export parallel command.

To determine if you are currently in parallel meshing mode you may list the current status using the List Parallel
command.

List Parallel Meshing

Meshing the Geometry

After assigning interval or sizing attributes to a geometric entity and a meshing scheme is applied, the geometry is ready
to be meshed. To mesh a geometric entity, use the command:

Mesh <entity> <id_range> [GLOBAL | Individual]
The <entity> to be meshed may be any one of the following:

Body
Volume
Surface
Curve
Vertex

278

CUBIT 11.0 User Documentation

The Global and Individual options affect how the constraints are gathered for interval matching. With the Global option,
the interval constraint equations are calculated from all entities in the entity list. The Individual option calculates the
interval constraint equations from each entity individually. The Global option is the default.

Default Scheme and Interval Selection

If either interval settings or schemes have not already been set on the entities being meshed, CUBIT will do its best to
automatically set one or both of these attributes. See Auto Scheme Selection and Auto Specification of Intervals for a
description of how CUBIT chooses these attributes. In cases where the automatic scheme selection algorithm fails to
select a scheme for the geometry, the meshing operation will fail. In this case explicit specification of the meshing scheme
and/or further geometry decomposition may be necessary.

Remeshing a Volume

The mesh generation is frequently an iterative process of meshing, deleting the mesh and remeshing. The remesh
command is a convenient tool to bypass the mesh deletion process. To remesh a volume use the following command:

Remesh Volume <id_range>

Remeshing a Swept Volume Mesh

This command is especially useful when using the sweep scheme. When a sweep scheme is applied to the volume, it will
delete the target surface mesh on a volume with one of the sweeping schemes and then remesh the volume. It is useful
when changing between sweep smooth options as in the following example below.

volume 1 scheme sweep
mesh volume 1

At this stage, the user may discover that poor quality elements may have been generated. The use could then do the
following:

volume 1 sweep smooth winslow
remesh volume 1

At this point, volume is remeshed using the sweep smooth winslow option

Continuing Meshing After a Mesh Failure

Frequently when meshing large assemblies containing a number of volumes, the mesh command can be applied to a
group of volumes with the same mesh command. Typically, if a mesh failure is detected, the meshing operation will
continue to mesh the remaining volumes specified at the command line. The following command permits the user to
override this feature to discontinue meshing additional volumes and return to the command line immediately after a mesh
failure is detected:

set continue meshing [ON|off]
The default for this command is ON.

Turning this setting OFF is useful when meshing assemblies where a meshing failure of one volume would adversely
affect the meshing of adjoining volume(s). This occurs frequently when meshing a sweep group using the sweep scheme.

Mesh Quality Assessment

Metrics for Triangular Elements
Metrics for Quadrilateral Elements
Metrics for Tetrahedral Elements
Metrics for Hexahedral Elements
Mesh Quality Command Syntax
Mesh Quality Example Output
Automatic Mesh Quality Assessment
Controlling Mesh Quality

279

CUBIT 11.0 User Documentation

(] Coincident Node Check

The “quality’ of a mesh can be assessed using several element quality metrics available in CUBIT. Information about the
CUBIT quality metrics can be obtained from the command

Quality Describe { hex | hexahedral | tet | tetrahedral | face | quad | quadrilateral | tri | triangular

}

which gives data on the quality metrics for each of the above element types. The following items discuss the mesh quality
assessment capabilities in CUBIT:

Metrics for Triangular Elements

The metrics used for triangular elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference
Element Area L~2 0 to inf None 1
Maximum Angle degrees 60 to 180 60 to 90 1
Minimum Angle degrees 0to 60 30 to 60 1
Condition No %) 1to inf 1t01.3 2
Scaled Jacobian L0 1to1l 0.2to1 2
Relative Size %) Otol 0.25t0 1 3
Shape L0 Oto1l 0.25t0 1 3
Shape and Size LAO 0to1l 0.25t0 1 3
Distortion LA2 -1tol 06tol 4

Approximate Triangular Quality Definitions:

Element Area: (1/2) * Jacobian at corner node

Maximum Angle: Maximum included angle in triangle

Minimum Angle: Minimum included angle in triangle

Condition No. Condition number of the Jacobian matrix

Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors
Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix
Shape: 2/Condition number of weighted Jacobian matrix

Shape & Size: Product of Shape and Relative Size

Distortion: {min(|J|)/actual area}*parent area, parent area = 1/2 for triangular element

280

CUBIT 11.0 User Documentation

Comments on Algebraic Quality Measures

Relative Size, Shape, and Shape & Size are algebraic metrics, which have well behaved properties. Cubit encourages the
use of these metrics over other metrics. These metrics are referenced to an ideal element which, in the case of triangular
elements, is an equilateral triangle. Thus deviations from an equilateral triangle are measured in various ways by the
algebraic metrics.

Relative size measures the size of the element vs. the size of reference element. If the element is twice or one-half the
size of the reference element, the relative size is one-half. By default, the size of the reference element is the average
size of all the elements that the quality command is currently evaluating.

The shape and size metric measures how both the shape and relative size of the element deviate from that of the
reference element.

References for Triangular Quality Measures

Traditional.

Knupp, 2000.

P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for publication.
SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

PR

Metrics for Quadrilateral Elements

The metrics used for quadrilateral elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference
Aspect Ratio L0 1toinf lto4 1
Skew L"0 Otol 0to 0.5 1
Taper L™ 0 to +inf 0to 0.7 1
Warpage L"0 Oto1 0.9t01.0 NEW
Element Area L~2 -inf to inf None 1
Stretch L"0 Otol 0.25t0 1 2
Minimum Angle degrees 01to 90 4510 90 3
Maximum Angle degrees 90 to 360 90 to 135 3
Condition No. L"0 1 toinf 1to4 4
Jacobian L~2 -inf to inf None 4
Scaled Jacobian L"0 -1to +1 05to1 4
Shear L~0 Oto1l 03to1l 5

281

CUBIT 11.0 User Documentation

Shape L0 Oto1l 0.3tol 5
Relative Size L~0 Oto1l 03to1l 5
Shear & Size L~0 Oto1l 0.2to1l 5
Shape & Size L0 Oto1l 0.2to1l 5
Distortion L~2 -ltol 06tol 6

Quadrilateral Quality Definitions

Aspect Ratio: Maximum edge length ratios at quad center

Skew: Maximum |cos A| where A is the angle between edges at quad center
Taper: Maximum ratio of lengths derived from opposite edges

Warpage: Cosine of Minimum Dihedral Angle formed by Planes Intersecting in Diagonals
Element Area: Jacobian at quad center

Stretch: Sqgrt(2) * minimum edge length / maximum diagonal length

Minimum Angle: Smallest included quad angle (degrees).

Maximum Angle: Largest included quad angle (degrees).

Condition No. Maximum condition number of the Jacobian matrix at 4 corners
Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad
Scaled Jacobian: Minimum Jacobian divided by the lengths of the 2 edge vectors
Shear: 2/Condition number of Jacobian Skew matrix

Shape: 2/Condition number of weighted Jacobian matrix

Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix
Shear and Size: Product of Shear and Relative Size

Shape and Size: Product of Shape and Relative Size

Distortion: {min(|J])/actual area}*parent area, parent area = 4 for quad

Comments on Algebraic Quality Measures

Shape, Relative Size, Shape & Size, and Shear are algebraic quality metrics that apply to quadrilateral elements. Cubit
encourages the use of these metrics since they have certain nice properties (see reference 5 below). The metrics are
referenced to a square-shaped quadrilateral element, thus deviations from a square are measured in various ways.

Shape measures how far skew and aspect ratio in the element deviates from the reference element.
Relative size measures the size of the element vs. the size of reference element. If the element is twice or one-half the
size of the reference element, the relative size is one-half. The reference element for the Relative Size metric is a square

whose area is determined by the average area of all the quadrilaterals on the surface mesh under assessment

Shape and size metric measures how both the shape and relative size of the element deviate from that of the reference
element.

282

CUBIT 11.0 User Documentation

The SHEAR metric is based on the condition number of the skew matrix. SHEAR is really just an algebraic skew metric
but, since the word skew is already used in the list of quad quality metrics, Cubit has chosen to use the word 'shear.’

Shear = 1 if and only if quadrilateral is a rectangle.

The Robinson 'skew' metric equals the ideal (zero) if the quad is a rectangle. It also attains the ideal if the quad is a
trapezoid, a kite, or even triangular!

References for Quadrilateral Quality Measures

1. (Robinson, 87)

2. FIMESH code.

3. Unknown.

4. (Knupp, 00)

5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for publication.
6. 6. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Details on Robinson Metrics for Quadrilaterals

The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper, element area, and stretch. The
calculations are based on metrics described in (Robinson, 87). An illustration of the shape parameters is shown in Figure
1, below. The stretch metric is calculated by dividing the length of the shortest element edge divided by the length of the
longest element diagonal.

I Iz
Baze line f,_,’_‘ ;
T T T T T 1 4 /
| | P
f i g xf
2 L i
I a I Fird o
ko e e = —
dsp ot Sate = afd
______ ﬂlﬂ-—_\-_ —_— e — — —
r - — 7 ra = '.r?2
| | / — =
hl: | I !
A s £
ol s L}' —
S | Q_.-_ _'___'___'___'___,__,—_ _ i
S = Fa Toper= Tid& T2

Figure 1. lllustration of Quadrilateral Shape Parameters (Quality Metrics)

Metrics for Tetrahedral Elements

The metrics used for tetrahedral elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range Reference
Aspect Ratio Beta L"O 1to inf 1to3 1
Aspect Ratio Gamma L"0 1toinf 1to3 1
Element Volume L"3 -inf to inf None 1
Condition No L"0 1 to inf 1to3 2

283

CUBIT 11.0 User Documentation

Jacobian L"3 -inf to inf None 2
Scaled Jacobian L"0 -ltol 0.2to1l 2
Shape L"0 Otol 0.2to1 3
Relative Size L"0 Otol 0.2to1 3
Shape and Size %) Oto1l 0.2to1 3
Distortion L0 dtol 0.6t01 4

Tetrahedral Quality Definitions

Aspect Ratio Beta: CR /(3.0 * IR) where CR = circumsphere radius, IR = inscribed sphere radius

Aspect Ratio Gamma: Srms**3 / (8.479670*V) where Srms = sqrt(Sum(Si**2)/6), Si = edge length

Element Volume: (1/6) * Jacobian at corner node

Condition No.: Condition number of the Jacobian matrix at any corner

Jacobian: Minimum pointwise volume at any corner

Scaled Jacobian: Minimum Jacobian divided by the lengths of 3 edge vectors

Shape: 3/Mean Ratio of weighted Jacobian Matrix

Relative Size: Min(J, 1/J), where J is the determinant of the weighted Jacobian matrix

Shape & Size: Product of Shape and Relative Size Metrics

Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 1/6 for tet

For tetral0 elements, the distortion metric can be used in conjunction with the shape metric to determine whether the mid-
edge nodes have caused negative Jacobians in the element. The shape metric only considers the linear (parent) element.
If a tetral0 has a non-positive shape value then the element has areas of negative Jacobians. However, for elements with
a positive shape metric value, if the distortion value is non-positive then the element contains negative Jacobians due to

the mid-side node positions.

Note that, for tetrahedral elements, there are several definitions of the term "aspect ratio" used in literature and in software
packages. Please be aware that the various definitions will not necessarily give the same or even comparable results.

References for Tetrahedral Quality Measures

(Parthasarathy, 93)

(Knupp, 00)

P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, to appear in Finite Elements for
Design

and Analysis.

4. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

wn e

Metrics for Hexahedral Elements

The metrics used for hexahedral elements in CUBIT are summarized in the following table:

284

CUBIT 11.0 User Documentation

Function Name

Aspect Ratio

Skew

Taper

Element Volume

Stretch

Diagonal Ratio

Dimension

Condition No.

Jacobian

Scaled Jacobian

Shear

Shape

Relative Size

Shear & Size

Shape & Size

Distortion

Hexahedral Quality Definitions

Aspect Ratio: Maximum edge length ratios at hex center.

Dimension

L0

L"0

L"0

L"3

L"0

L"0

"M

L"0

L"3

L"0

L"0

L"0

L"0

L"0

L0

L"0

Full Range

1 to inf

Oto1l

0 to +inf

-inf to inf

Otol

Otol

0 to inf

1 to inf

-inf to inf

-1to+1

Oto1l

Otol

Otol

Oto1l

Otol

Oto1l

Acceptable Range Reference

1to4 1
0to 0.5 1
0to 0.4 1

None 1
0.25t0 1 2
0.65t0 1 3

None 1

1to 8 5

None 5
05t01 5
03tol 5
0.3to1l 5
05t01 5
0.2to1l 5
0.2to 1 5
06tol 6

Skew: Maximum |cos A| where A is the angle between edges at hex center.

Taper: Maximum ratio of lengths derived from opposite edges.

Element Volume: Jacobian at hex center.

Stretch: Sgrt(3) * minimum edge length / maximum diagonal length.

Diagonal Ratio: Minimum diagonal length / maximum diagonal length.

Dimension: Pronto-specific characteristic length for stable time step calculation. Char_length = Volume / 2 grad Volume.

285

CUBIT 11.0 User Documentation

Condition No. Maximum condition number of the Jacobian matrix at 8 corners.
Jacobian: Minimum pointwise volume of local map at 8 corners & center of hex.
Scaled Jacobian: Minimum Jacobian divided by the lengths of the 3 edge vectors.
Shear: 3/Mean Ratio of Jacobian Skew Matrix

Shape: 3/Mean Ratio of weighted Jacobian Matrix

Relative Size: Min(J, 1/J), where J is the determinant of weighted Jacobian matrix
Shear & Size: Product of Shear and Size Metrics

Shape & Size: Product of Shape and Size Metrics

Distortion: {min(|J])/actual volume}*parent volume, parent volume = 8 for hex

References for Hexahedral Quality Measures

(Taylor, 89)
FIMESH code

1
2.
3. Unknown
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured
Initial Meshes, to appear in Finite Elements for Design
and Analysis.
6. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

Mesh Quality Command Syntax

The base command to view the quality of a mesh is the following:
Quality {geom_and_mesh_list} [metric name] [quality options] [filter options]

Where the list contains surfaces and volumes and groups that have been meshed with faces, triangles, hexes, and
tetrahedra; the list can also specify individual mesh entities or ranges of mesh entities.

If a specific metric name is given, only that metric or metrics are computed for the specified entities. Note that the metric
given must be one which applies to the given entities. To see a list of quality metrics for individual entities see the Mesh
Quality Assessment section and select the desired entity type: hexahedral, tetrahedral, quadrilateral, or triangle.

The metric name can also be more general than a specific metric. Four generalized options for metric name can be used:

Allmetrics: All of the metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported.

Algebraic: All algebraic metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported (e.g., Shape, Shear, Relative Size).

Robinson: All Robinson metrics corresponding to the element type of the geom_and_mesh_list will be computed and
reported (e.g., Aspect Ratio, Skew, Taper).

Traditional: All the traditional Cubit metrics corresponding to the element type of the geom_and_mesh_list will be
computed and reported (e.g., area, volume, angle, stretch, dimension).

If no metric name is supplied, the default metric is "Shape".

Quality Options

The quality options are:

286

CUBIT 11.0 User Documentation

Scope
[Global | Individual]

If the user specifies individual, one quality summary is generated for each entity specified on the command line. If the
user specifies global, or specifies neither, then one quality summary is generated for each mesh element type.

Draw
[Draw [Histogram] [Mesh] [Monochrome] [Add]]

If the user specifies draw histogram, then histograms are drawn in a separate graphics window. The window contains
one histogram for each quality metric. If the user specifies draw mesh, then the mesh elements are drawn in the default
graphics window. A color-coded scale will appear in the graphics window. The histogram and mesh graphics are color
coded by quality: a small metric value corresponds to red, a large metric value to blue and in-between values according to
the rainbow. You can grab the side of color bar and resize it. The text gets smaller as the color bar width decreases. You
can also grab in the middle of the color bar and move it around. It can be repositioned to the bottom or top and it will
automatically change orientations. See Figure 1.

Figure 1. Quality Scale

If monochrome is specified, then the graphics are not color-coded. If add is specified, then the current display is not
cleared before drawing the mesh elements.

287

CUBIT 11.0 User Documentation

List

[List [Detail] [Id] [Verbose Errors]] [Geometry]
If the user specifies List, then the quality data is summarized in text form. List Detail lists the mesh elements by
ascending quality metric. List Id lists the ids of the mesh elements. If Verbose Errors is specified, then details about

unacceptable quality elements are printed out above the summaries. If Geometry is specified, then a list of the geometric
entities that own the elements will be printed.

Filter

There are several options available to filter the output of the quality command, using the following filter options :
[High <value>] [Low <value>]

Discards elements with metric values above or below value; either or both can be used to get elements above or below a
specified value or in a specified range.

[Top <number>] [Bottom <number>]

Keeps only number elements with the highest or lowest metric values. For example, " Quality hex all aspect ratio top 10
" would request the elements with the 10 highest values of the aspect ratio metric.

Mesh Quality Example Output

The typical summary output from the command quality surface 24 is shown in Figure 1. Figure 2 shows the
corresponding histogram. The colored element display resulting from the command quality surface 1 draw “Skew' is
shown Figure 3. A color legend is also printed to the console as shown in Figure 4.

Surface 24 Dunad quality. 292 slement=:

Function Hame Average Std Dew Minimum f1d} Mazimum (id)
Aspect Ratio 1.33%=+00 3.374=-01 1.001l=e+00 (244 3. .662=+00 (132)
Skew 1.848=2-01 1.46le—01 7 9836=—04 (212} &.440=-01 (284)
Taper 1.342e-01 9.3%%7=-02 § 689=-03 (164) 5. 500e-01 (133}
Warpage 9. 991=-01 4 465=-03 9 283=—01 (14 1.000e+00 (82
Element Area 6.075=-04 4 725=-04 4 941=-05 (248 2. 202=-03 (274)
Stretch 7.276e-01 1.2353=-01 3 266e-01 (1473 9 .587e-01 (16l)
Hamximum Angle 1.09%9=+02 1.32%9=+01 9.079%9=+01 (82) 1.738=+02 (14)
Minimum Angle 7.143e+01 1.185e=+01 3.373=+01 (1353 8 . 955=+01 (82}
Condition Ho. 1.250e+00 6.:244=-01 1 .003=+00 (161} 1.107=+01 (14}
Jacobian 5.125e-04 4.2Y3=e-04 9 A96e—06 (143 1 .918=-03 (274}
Scaled Jacobian 9. 044e-01 1.104e-01 1.072e—-01 (143 9.999=—01 (82)
Shear 9.045=-01 1.104e-01 1.072e-01 (14) 9.999=-01 (82}
Shape 8.436e-01 1.314=-01 9 .033e-02 (14) 9 966=-01 (161}
Felatiwve Size 3.036e-01 2. 531e-01 3.226e-03 (248) 9 .710e-01 (45)
Shear And Size 2. 789=-01 2 36le-01 1.477=—-03 (14 9 38%9=-01 (45}
Shape And Size 2.609=-01 2. 234e-01 1.245=—03 {143 9 389=-01 (45}
Distortion 8. 118e-01 1.352e-01 9 654e-02 (143 9 8cde-01 (82)

Figure 1. Typical Summary for a Quality Command

288

CUBIT 11.0 User Documentation

Figure 2. Histogram output from command "Quality Surface 24 Draw Histogram"

289

CUBIT 11.0 User Documentation

Figure 3. Graphical output of quality metric for command "Quality Surface 24 Skew Draw Mesh"

surface 24 [uad

Lkew
Elue
Cyran
Green
Fellow
DEY¥ellow
Pink

Fed

ranges
ranges
ranges
ranges
ranges
ranges
ranges
ranges

quality,

from l.6l2e-03
from 1l.6l2e-03
from 1.178e-01
from 2.34le-01
from 3.503e-01
from 4.666e-01
from 5.85258e-01
from 6.990e-01

to
to
to
to
to
to
to
to

o0 o Gfs L) [

280 elements:
a.
.178e-01
.34le-01
L503e-01
.B66e-01
.828e-01
.990e-01
.153e-01

155e-01

[280 entities)
(102 entities)
(60 entities)
[58 entitiez)
[29 entitiez)
[15 entities)
[12 entities)
[4 entities)

Figure 4. Legend for command "Quality Surface 1 Skew Draw Mesh"

Automatic Mesh Quality Assessment

CUBIT performs an automatic calculation of mesh quality which warns users when a particular meshing scheme or other
meshing operation has created a mesh whose quality may be inadequate. These warnings are supplied in case the user

forgets to manually check the mesh quality.

CUBIT automatically calculates the SHEAR quality of hexahedral and quadrilateral elements and the SHAPE quality of
tetrahedral and triangular elements. The"shear" metric measures element skew and ranges between zero and one with a
value of zero signifying a non-convex element, and a value of one being a "perfect", right-angled element. The “shape”
metric also ranges between zero and one with a value of zero signifying a degenerate or inverted element and a value of
one signifying a “perfect”, equilateral element. The quality of the mesh is then defined to be the minimum value of the
shear metric for hexahedral and quadrilateral elements and the shape metric for tetrahedral and triangular elements, with
the minimum taken over the elements in the mesh.

290

CUBIT 11.0 User Documentation

If the quality of the mesh is zero, the code reports "ERROR: Negative Jacobian Element Generated" to the command
window. By default, if the quality of the mesh is positive but less than a certain threshold, the code reports "WARNING:
Poorly-Shaped Element Generated" to the command window. Also reported in this case is the ID of the offending element,
the value of its shear (or shape) metric, and the value of the threshold to which it was compared. The default value of the
threshold parameter is 0.2. Users may change the threshold value by issuing the command

Set quality threshold <double=0.2>

The user may also change what type of message is printed in the case of a poor quality, but positive Jacobian mesh. This
message can be printed as a warning (the default) or an error or can be turned off completely using the command

Set print quality { WARNING | error | off }

The above commands only affect the message generated for meshes with a quality greater than zero and less than the
given threshold value; an error will always be generated for meshes with a quality of zero (that is, for meshes containing
negative Jacobian elements).

Controlling Mesh Quality

If the quality of a model after meshing isn't acceptable, there are two options available to improve that quality. The user
can ask for more smoothing, or delete the mesh and start over. There are some commands that the user can invoke
before meshing the model which can help to improve mesh quality. Some of them are discussed here.

Skew Control

The philosophy behind the skew control algorithm is one of subdividing surfaces into blocky, four-sided areas which can
be easily mapped. The goal of this subdivide-and-conquer routine is to lessen the skew that a mesh exhibits on
submapped regions. By controlling the skew on these surfaces, the mesh of the underlying volume will also demonstrate
less skew.

The commands for skew control are:
Control Skew Surface <surface_id_range> [Individual]
Delete Skew Control Surface {surface_list} [Propagate]

The keyword Individual is deprecated. Its purpose is to specify that surfaces should be processed without regards to the
other surfaces in the given list. This is not necessary, and could lead to problems with the final mesh. When the command
is entered, the algorithm immediately processes the surfaces, inserting vertices and setting interval constraints on the
resulting subdivided curves. In this way, the mesh is more constrained in its generation, and the resulting skew on the
model can be lessened. The only surfaces that can utilize this algorithm are those that lend themselves to a structured
meshing scheme, although future releases might lessen this restriction.

The user also has the ability to delete the changes that the skew control algorithm has made. This is done by using the
delete skew control command.

When the user requests the deletion of the skew control changes on a given surface, every curve on that surface will have
the skew control changes deleted, even if a given curve is shared with another surface on which skew control was

performed. If the user wishes to propagate the deletion of skew control to all surfaces which are affected by one (or more)
particular surfaces, the keyword propagate should be used.

Propagate Curve Bias

When a bias mesh scheme is applied to a curve, this sometimes creates skewing of the surface mesh that is attached.
Sometimes the user will want to ensure that the same bias is applied to curves on attached surfaces so that this skewing
is minimized. The command for doing this is:

Propagate Curve Bias [surface|volume|body|group <id_list>]

This command will search out all 4-sided mapable surfaces in the input list, find which curves of those have a bias
scheme set, and will propagate that bias across the mapable surfaces.

291

CUBIT 11.0 User Documentation

Adjust Boundary
Adjust Boundary {Surface|Group} <id_range> [Angle <double>]

This command can be used to improve element quality for mapped or submapped surface meshes. Often, due to vertex
positions, the curve meshing for a surface will lead to a poor quality surface mesh. This command can be used to adjust
the curve meshes in an attempt to generate a better quality surface mesh. The command works by looking at the angle
the mesh edges leave the boundary. In a perfect mapped or submapped mesh, the mesh edges will be orthogonal to the
boundary, or will go off at 90 degree angles. The adjust boundary command looks at the deviation of the mesh edges, and
if it is greater than the prescribed angle deviation, it will move the node location such that it is 90 degrees, if possible. The
deviation angle by default is 5 degrees and can be changed by the user through the [Angle <double>] option in the
command. In order to modify the curve meshes, the surface meshes are first deleted then later remeshed after the curve
meshes have been repositioned and fixed. This command assumes that the volumes attached to the surface have not
been meshed, if they have been, the command will return an error message. It should be noted that this command, while
useful, may not always work due to interval constraints (i.e., you may need to change the intervals on the surface), or if
the surfaces are not very blocky.

Coincident Node Check

The ability to check for coincident nodes in the model is available in CUBIT. It uses an efficient octal hash tree to make
the comparisons. The command is:

Quality Check Coincident Node [in] [group | body | volume | surface | curve | vertex
<id_range>] [merge [delete]] [HIGHLIGHT | draw [color <number>]] [list] [into group [
name |id]]

If no entity list is given, the command works on all the nodes in the model. If an entity list is given, then it compares the
nodes on those entities with the rest of the nodes in the model. By default the command highlights the coincident nodes in
the graphics window and lists the total number of coincident nodes found. You can also have it clear the graphics and
draw the nodes, and/or list the coincident node ids. Optionally, the coincident nodes found can be placed in a group.

If the model being operated on is from an imported universal file (i.e., no geometry exists in the model), you can merge
the coincident nodes with the merge option. In this case delete allows you to delete the extra nodes (recommended). If
you do not delete them they are placed into an output group.

You can control the tolerance used to check between nodes with the following setting (default = 1e-8):

set Node Coincident Tolerance [<value>]
Mesh Modification

Mesh Smoothing
Mesh Refinement

Mesh Coarsenin

Node and Nodeset Repositioning

Collapsing Mesh Edges

Deleting, Creating, and Merging Mesh Elements
Align Mesh

After meshing is completed, it may be desirable to change features of the mesh without remeshing the whole volume.
Mesh modification methods include tools for improving mesh quality, repositioning mesh elements, or changing mesh
density. These methods can be applied on the whole model, or on small sections of the model without requiring
remeshing the geometry, and without modifying the underlying geometry.

Mesh Smoothing

Centroid Area Pull
Equipotential
Laplacian

Smart Laplacian

292

CUBIT 11.0 User Documentation

Condition Number
Mean Ratio
Winslow

Untangle

Related Topics

® Smoothing mesh-based geometry

After generating the mesh, it is sometimes necessary to modify that mesh, either by changing the positions of the nodes
or by removing the mesh altogether. CUBIT contains a variety of mesh smoothing algorithms for this purpose. Node
positions can also be fixed, either by specific node or by geometry entity, to restrict the application of smoothing to non-
fixed nodes.

Mesh smoothing in CUBIT operates in a similar fashion to mesh generation, i.e. it is a two-step process whereby a
smooth scheme is chosen and set, then a smooth command performs the actual smoothing. Like meshing algorithms,
there is a variety of smoothing algorithms available, some of which apply to multiple geometry entity types and some
which only apply to one specific type (these algorithms are described below.) To smooth the mesh on a geometry entity,
the user must perform the following steps:

1. Set the smooth scheme for the object using the following command:

{Curve|Surface|Volume} <range> smooth scheme <scheme>

where <scheme> is any acceptable smooth scheme described in this section. Also set any scheme-
specific information, using the smooth scheme setting commands described below.

2. Smooth the object, using the command:

Smooth Curve <range>
Smooth Surface <range> [Global]
Smooth {Body|Volume|Group} <range>
Smooth {Hex|Tet|Tri|Face|Tri|Edge} <range>
Groups of entities may be smoothed, by smoothing a group or a body.

If a Body is specified, the volumes in that Body are smoothed. If a Group is specified, only the volume meshes within
these groups are smoothed - no smoothing of the surface meshes is performed.

Meshed entities such as hexes or tris can be smoothed individually or in groups by specifying the entities in a list.
When smoothing a set of surfaces, the keyword global can be added to the smooth command such as
smooth surface <range> [global]

If the smoothing algorithm for two neighboring surfaces are both allowed to move boundary nodes, then appending the
"global" keyword will often result in a higher quality mesh near the curve(s) shared by those two surfaces.

Smoothing algorithms move nodes in an attempt to improve the quality of the mesh elements. Most of these algorithms
are iterative, and the algorithm terminates when some criterion is met. Specifically, for the Laplacian and Equipotential
style smoothers, smoothing is terminated either by satisfying a smoothing tolerance or by performing the maximum
number of smoothing iterations. For these smoothers, the smooth tolerance may be set by the user:

[Set] Smooth Tolerance <tol>

The value <tol> tells the smoother to stop when node movement is less than tol * local_minimum_edge_length.

The default value for tol is 0.05. The maximum number of iterations may be set by the user. For volumes, the smooth
tolerance and iterations may also be set by

Volume Smooth Tolerance <tol>

293

CUBIT 11.0 User Documentation

Volume Smooth Iterations <iters>

(Note: the former command affects all smoothers that respect the user set tolerance while the latter two commands only
affect the volume smoothers.)

Where used in the smooth schemes below, the Free keyword permits the nodes lying on the bounding entities to “float"
along those entities; without this keyword, boundary nodes remain fixed.

Nodal positions may be fixed so that no smoothing scheme, either implicit or explicit, will move them, with the following
command:

{Curve|Surface|Volume} <range> Node Position {Fixed|Free}
Node <range> Position {Fixed|Free}

The following command does not fix nodal positions, but does fix the connectivity of the mesh, preventing certain volume
schemes from changing the bounding mesh:

{Curve|Surface|Volume} Mesh {Fixed|Free}

The additional following scheme is available for research purposes:

(] Randomize

Centroid Area Pull

Applies to: Surface Meshes
Summary: Attempts to create elements of equal area
Syntax:
Surface <range> Smooth Scheme Centroid Area Pull [Free]
Discussion:

This smooth scheme attempts to create elements of equal area. Each node is pulled toward the centroids of adjacent
elements by forces proportional to the respective element areas (Jones, 74).

Equipotential

Applies to: Volume Meshes
Summary: Attempts to equalize the volume of elements attached to each node
Syntax:

Volume <range> Smooth Scheme Equipotential [Free]
Discussion:

This smoother is a variation of the Equipotential (Jones, 74) algorithm that has been extended to manage non-regular
grids (Tipton, 90). This method tends to equalize element volumes as it adjusts nodal locations. The advantage of the
equipotential method is its tendency to "pull in" badly shaped meshes. This capability is not without cost: the equipotential
method may take longer to converge or may be divergent. To impose an equipotential smooth on a volume, each element
must be smoothed in every iteration--a typically expensive computation. While a Laplacian method can complete
smoothing operations with only local nodal calculations, the equipotential method requires complete domain information to
operate.

Laplacian

Applies to: Curve, Surface, and Volume meshes

294

CUBIT 11.0 User Documentation

Summary: Tries to make equal edge lengths
Syntax:
{Surface|Volume} <range> Smooth Scheme Laplacian [Free] [Global]
Discussion:
The length-weighted Laplacian smoothing approach calculates an average element edge length around the mesh node
being smoothed to weight the magnitude of the allowed node movement (Jones, 74). Therefore this smoother is highly

sensitive to element edge lengths and tends to average these lengths to form better shaped elements. However, similar to
the mapping transformations, the length-weighted Laplacian formulation has difficulty with highly concave regions.

Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer moved when smoothing moves the
node less than 0.005 * the minimum edge length. The maximum number of smoothing iterations is the maximum of 100
and the number of nodes in the curve mesh. Neither of these parameters can currently be set by the user.

Using the global keyword when smoothing a group of surfaces will allow smoothing of mesh on shared curves to improve
the quality of elements on both surfaces sharing that curve.

Smart Laplacian

Applies to: Surface and Volume meshes
Summary: Tries to make equal edge lengths while ensuring no degradation in element shape
Syntax:
{Surface|Volume} <range> Smooth Scheme Smart Laplacian
Discussion:

The Smart Laplacian smoothing approach is a variation on the standard Laplacian algorithm. The algorithm iteratively
loops over the mesh and updates nodes based on the location of their neighbors. First, a patch of elements is formed
around a given node. The quality of this patch is assessed to determine the quality of the worst shaped element. Then a
new candidate node position is calculated as the average of the neighboring nodes. The quality of the patch is assessed
again using the candidate node position. If there has been no degradation in the quality of the elements in the patch, the
candidate node position is accepted; otherwise, the candidate node position is rejected and the node is returned to its
previous position.

The Smart Laplacian smoother is intended to provide a reliable smoother that is nearly as fast as the Length-Weighted
Laplacian smoother. Due to the dual goals of this smoother, making equal edge length and improving element shape, it
will not always be able to make progress. However, it is often useful as a quick alternative to the more time-consuming
optimization methods like Mean Ratio or Condition Number. When this smoother fails to make significant progress, the
optimization methods can be tried.

The Smart Laplacian Smoother uses the Mean Ratio quality measure to assess element shape. This smoother is ensuring
no degradation in the minimum Mean Ratio. The Mean Ratio smoother is optimizing the same metric, but it is attempting
to improve the average Mean Ratio quality.

Condition Number

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Optimizes the mesh condition number to produce well-shaped elements.
Syntax:

Surface <surface_id_range> Smooth Scheme Condition Number [beta <double=2.0>] [cpu
<double=10>]

Related Commands:

Untangle

295

CUBIT 11.0 User Documentation

Discussion:

The condition number smoother is designed to be the most robust smoother in Cubit because it guarantees that if the
initial mesh is non-inverted then the smoothed mesh will also be non-inverted. The price exacted for this capability is that
this smoother is not as fast as some of the other smoothers.

Condition Number measures the distance of an element from the set of degenerate (non-convex or inverted) elements.
Optimization of the condition number increases this distance and improves the shape quality of the elements. Condition
number optimization requires that the given mesh contain no negative Jacobians. If the mesh contains negative Jacobians
and this command is issued, Cubit automatically calls the Untangle smoother and attempts to remove the negative
Jacobians. If successful, condition number smoothing occurs next; the resulting mesh should have no negative Jacobians.
If untangling is unsuccessful, condition number smoothing is not performed.

There is no "fixed/free" option with this command; boundary nodes are always held fixed.

The command above only sets the smoothing scheme; to actually smooth the mesh one must subsequently issue the
command "smooth surface <surface_id_range>" or "smooth volume <volume_id_range>".

Stopping Criteria: Smoothing will proceed until the objective function has been minimized or until one of two user input
stopping criteria are satisfied. To input your own stopping criterion use the optional parameters 'beta’ and 'cpu’ in the
command above. The value of beta is compared at each iteration to the maximum condition number in the mesh. If the
maximum condition number is less than the value of beta, the iteration halts. In Cubit condition number ranges from 1.0 to
infinity, with 1.0 being a perfectly shaped element. Thus the smaller the maximum condition number, the better the mesh
shape quality. The default value of the beta parameter is 2.0. The value supplied for the "cpu” stopping criterion tells the
code how many minutes to spend trying to optimize the mesh. The default value is 10 minutes. Optimization may also be
halted by using "control-C" on your keyboard.

To view a detailed report of the smoothing in progress issue the command "set debug 91 on" prior to smoothing the
surfaces or volumes. You will get a synopsis of whether or not untangling is needed first and whether the stopping criteria
have been satisfied. In addition the following printout information is given for each iteration of the conjugate gradient
numerical optimization:

Iteration=n, Evals=m, Fcn=valuel, dfmax=value2, time=value3 ave_cond=value4,
max_cond=value5, min_jsc=value6

n is the iteration count, m is the number of objective function evaluations performed per iteration, valuel is the value of
the objective function (this usually decreases monotonically), value2 is the norm of the gradient (does not always
decrease monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero but this is attained only for a perfect mesh. ave_cond,
max_cond, and min_jsc are the average and maximum condition number, and the minimum scaled jacobian. ave_cond
generally decreases monotonically because it is directly related to valuel.

Mean Ratio

Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Moves interior mesh nodes to optimize the average mean ratio metric value of the mesh.

Syntax:
Surface <surface_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]
Volume <volume_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]
Discussion:

CUBIT includes a mean ratio smoother provided by MESQUITE, a mesh optimization toolkit by Argonne National
Laboratory and Sandia National Laboratories. (See Brewer, et al. 2003 for more details on the MESQUITE toolkit.) This
smoother is similar in purpose to the Condition Number smoother. However, the Mean Ratio smoother uses a second
order optimization method, and therefore it will often reach a near-optimal mesh more quickly than the Condition Number
smoother. The Mean Ratio smoother requires the initial mesh to be untangled, but the smoother is guaranteed to not
tangle the mesh. If the user attempts to call the Mean Ratio smoother on a tangled mesh, an untangler will first attempt to
untangle the mesh before calling the Mean Ratio smoother.

The Mean Ratio smoother's optimization process terminates when one of the following three criteria is met:

296

CUBIT 11.0 User Documentation

1. The mesh is "close" to an optimal mesh configuration.
2. The maximum allotted time has been exceeded.
3. The user interrupts the smoothing process.

The user has control over the second and the third criteria only. For criterion 2, the default is for the smoother to terminate
after ten minutes even if a near-optimal mesh has not been reached. The user can change this time bound by specifying
the optional "cpu" argument in the command listed above. This argument takes a single, positive number that represents
the time (in minutes) that will be used as a time bound. If the user wishes to terminate the process early, criteria three
allows the user to "interrupt” (for example, on some platforms, by pressing CTRL-C) the process. If the process is
terminated early, the mesh will not revert to the original node positions; CUBIT will instead keep the partially optimized
mesh.

Winslow

Applies to: Surface meshes
Summary: Elliptic smoothing technique for structured and unstructured surface meshes
Syntax:
Surface <range> Smooth Scheme Winslow [Free]
Discussion:
Winslow elliptic smoothing (Knupp, 98) is based on solving Laplaces equation with the independent and dependent
variables interchanged. The method is widely used in conjunction with the mapping and submapping methods to give

smooth meshes with positive Jacobians, even on non-convex two-dimensional regions. The method has been extended in
CUBIT to work on unstructured meshes.

Untangle

Applies to: Triangular or Quadrilateral Surface Meshes Tetrahedral or Hexahedral Volume Meshes. Does not apply to
Mixed Element Meshes.

Summary: Removes as many negative Jacobians from the mesh as possible by minimizing a certain objective function.
Syntax:

Surface <surface_id_range> Smooth Scheme Untangle [beta <double=0.02>] [cpu
<double=10>]

Volume <volume_id_range> Smooth Scheme Untangle [beta <double=0.02>] [cpu
<double=10>]

Related Commands:
Condition Number
Discussion:

The Untangle 'smoother' is designed to eliminate negative Jacobians from a given mesh by moving nodes to appropriate
locations. If a mesh node is not involved in causing a negative Jacobian it will not be moved. If a mesh has no negative
Jacobians, the Untangler will not move any of the nodes. This smoother is not magic: if an untangled mesh does not exist
for the given mesh topology, the untangler will not untangle the mesh. Instead, it will do the best it can and exit gracefully.
An untangled mesh produced by this smoother will often have poor shape quality; in that case it is recommended that
untangling be followed by condition number smoothing. The untangle smoother is automatically called by the condition
number smoother.

There is no "fixed/free" option with this command; boundary nodes are always held fixed. As a result, users should be
aware that the volume untangler cannot succeed if the volume contains a surface mesh which contains a negative
Jacobian. In that case, one must first remove the surface mesh negative Jacobians by invoking the surface Untangler and
then invoke the volume Untangler.

The command above only sets the smoothing scheme; to actually smooth the mesh one must subsequently issue the
command "smooth surface <surface_id_range>" or "smooth volume <volume_id_range>".

297

CUBIT 11.0 User Documentation

Stopping Criteria: Untangling will proceed until the objective function has been minimized or the optional user input "cpu"
has been satisfied. The latter stopping criterion tells the code how many minutes to spend trying to untangle the mesh.
The default value is 10 minutes. Optimization may also be halted by using "control-C" on your keyboard.

Beta Parameter: An optional user input parameter "beta" plays a role in determining the optimal mesh. Optimization
proceeds until the minimum scaled Jacobian of the mesh is (roughly) greater than beta. To remove negative Jacobians
one would need beta=0 (however, as a safety margin, we choose beta=0.02 as the default). To further improve the scaled
Jacobian of the mesh, input a larger value of "beta". If a mesh with all scaled Jacobians greater than "beta" does not exist,
optimization will continue until the cpu time stopping criterion has been met. Therefore, it is best not to use "beta" values
too large (say, greater than 0.2) without also decreasing the cpu time limit.

To view a detailed report of the smoothing in progress issue the command "set debug 91 on" prior to smoothing the
surfaces or volumes. You will get a synopsis of whether or not untangling is needed and whether the stopping criteria are
satisfied. In addition the following printout information is given for each iteration of the conjugate gradient numerical
optimization:

Iteration=n, Evals=m, Fcn=valuel, dfmax=value2, time=value3 min_jsc=value4

n is the iteration count, m is the number of objective function evaluations performed per iteration, valuel is the value of
the objective function (this usually decreases monotonically), value2 is the norm of the gradient (does not always
decrease monotonically), and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero; this value is attained only when the minimum scaled Jacobian of
the mesh exceeds "beta". The minimum scaled jacobian is also reported.

Mesh Refinement

e Uniform Mesh Refinement
(] Refining at a Geometric or Mesh Feature
(] Hexahedral Refinement Using Sheet Insertion

CUBIT provides several methods for conformally refining an existing mesh. Conformal mesh refinement does not leave
hanging nodes in the mesh after refinement operations, rather conformal mesh refinement provides transition elements to
the existing mesh. Both local and global mesh refinement operations are provided.

Uniform Mesh Refinement

The Refine Surface and Refine Volume commands provide capability for uniformly refining an entire surface or volume
mesh. The Refine Surface Command can only be used on surface meshes that are not attached to a volume, whereas the
Refine Volume command will refine both surface and volume meshes. The command syntax is:

Refine Volume <range>numsplit<int>

Refine Surface <range>numsplit<int>
The numsplit option specifies how many times to subdivide an element. A value of 1 will split every triangle and

quadrilateral into four pieces, and every tetrahedron and hexahedron into eight pieces. Examples of uniform refinement on
each element are shown below. For more information on uniform hexahedral mesh refinement see the documentation for

dicing.

AVAA y

NumSplit = 1 NumSplit = 2

298

CUBIT 11.0 User Documentation

original mesh

original mesh NumSplit = 1 NumSplit = 2
original mesh NumSplit = 1 NumSplit = 2
original mesh NumSplit = 1 NumSplit = 2

Figure 1. Example of uniform refinement for each of the mesh entities

Refining at a Geometric or Mesh Feature

CUBIT also provides methods for local refinement around geometric or mesh features. Individual elements or groups of
elements can be refined in this manner using the following syntax.

Refine {Node|Edge|Tri|Face|Tet|Hex} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing Function
[no smooth

299

CUBIT 11.0 User Documentation

Refine {Vertex|Curve|Surface} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing Function
[no_smooth

To use these commands, first select mesh or geometric entities at which you would like to perform refinement.
Refinement will be applied to all mesh entities associated with or within proximity of the entities. The all keyword may be
used to uniformly refine all elements in the model

The following is a description of refinement options.
NumSplit

Defines the number of times the elements in the region will be split. A NumSplit value of 1 will split triangles and
quadrilaterals into four elements and tetrahedrons and hexahedrons into eight elements. Figure 1 shows each of the
original geometric entities on the left and after refinement with NumSplit values of 1 and 2.

Size, Bias

The Size and Bias options are useful when a specific element size is desired at a known location. This might be used for
locally refining around a vertex or curve. The Bias argument can be used with the Size option to define the rate at which
the element sizes will change to meet the existing element sizes on the model. Figure 2 shows an example of using the
Size and Bias options around a vertex. Valid input values for Bias are greater than 1.0 and represent the maximum
change in element size from one element to the next. Since refinement is a discrete operation, the Size and Bias options
can only approximate the desired input values. This may cause apparent discontinuities in the element sizes. Using the
default smooth option can lessen this effect. It should also be noted that the Size option is exclusive of the NumSplit
option. Either NumSplit or Size can be specified, but not both.

original mesh Bias=2.0 Bias=1.5

Figure 2. Example of using the Size and Bias options at a Vertex.
Depth

The Depth option permits the user to specify how many elements away from the specified entity will also be refined.
Default Depth is 1. Figure 3 shows an example of using the depth option when refining at a node.

original mesh Depth=1 Depth=2

Figure 3. Example of using the Depth option at a node to control how far from the node to propagate the refinement.

300

CUBIT 11.0 User Documentation

Radius

Instead of specifying the number of elements to describe how far to propagate the refinement, a real Radius may be
entered. The effects of the Radius are similar to that shown in Figure 3, except that the elements whose centroid fall
within the specified Radius will be refined. Transition elements are inserted outside of this region to transition to the
existing elements.

Sizing Function

Refinement may also be controlled by a sizing function. CUBIT uses sizing functions to control the local density of a
mesh. Various options for setting up a sizing function are provided, including importing scalar field data from an exodus
file. In order to use this option, a sizing function must first be specified on the surface or volume on which the refinement
will be applied. See Adaptive Meshing for a description of how to define a sizing function.

no_smooth
The default mode for refinement operations is to perform smoothing after splitting the elements. This will generally provide

better quality elements. In some cases it may be necessary to retain the original node locations after refinement. The
no_smooth option provides this capability

Hexahedral Refinement Using Sheet Insertion

Several tools for refining a hexahedral mesh using sheet insertion and deletion are available in CUBIT.

Refining at a Geometric Feature
Refining along a Path
Refining a Hex Sheet

Hex Sheet Drawing

Refining at a Geometric Feature

In addition to uniform refinement, the dicing scheme provides additional controls for specifying refinement options on an
existing hex mesh. The following commands offer additional controls on refinement with respect to one or more geometric
features of the model.

An existing hexahedral mesh can be refined at a geometric feature using the following command:

Refine Mesh Volume <id> Feature {Surface | Curve | Vertex | Node} <id_range> Interval
<integer>

This command refines the mesh around a given feature by adding sheets of hexes. These sheets can be generalized as
planes for surfaces, cylinders for curves, and spheres for vertices. The interval keyword specifies the number of intervals
away from the feature to insert the new sheet of hexes. For this command a single sheet of hexes is inserted into the
hexahedral mesh.

Figure 4 shows an example of this command where the feature at which refinement is to be performed is a curve. In this
case the interval chosen was, 2. This indicated that the elements 2 intervals away from the curve would be refined.

301

CUBIT 11.0 User Documentation

Figure 4. Example of Refinement at a curve

Refining along a path

Hexahedral meshes can be refined from a specific node and along a propagated path using the following command
Refine Mesh Start Node <id> Direction Edge <id> End Node <id> [Smooth]

Figure 5 shows a swept mesh and it's cross section. The cross section view on the left shows a path that has been

propagated through the mesh between the start node and end node. This path is then projected along a chain of edges in

the direction given by the direction edge as shown in Figure 5 . The start node and end node must be on the same sweep

layer. This refinement procedure also requires the volume’s meshing scheme to be set to sweep. If the smooth keyword is
given the mesh will be smoothed after the refinement step is complete.

Direction edge

Direction

end node

edge

Figure 5. Refining a Mesh Along a Path

Refining a Hex Sheet
The following command can be used to refine the elements in one or more hex sheets:

Refine Mesh Sheet [Intersect] { Node <id_1> <id_2> | Edge <id_range>} { Factor <double> |
Greater_than <size>} [Smooth]

The node and edge keywords are used to define the hex sheet(s) to be refined. If the node option is chosen, only one
node pair can be entered (see Figure 6). If the edge option is chosen, one or more edges can be entered (see Figure 7).

302

CUBIT 11.0 User Documentation

ko o

Figure 6. Refining a Mesh Along a Path

L4 4

Figure 7. Refine mesh sheet edge 1584 1564 1533 1502 1471 greater_than 6

The factor and greater_than keywords are used to specify the refinement criteria for the selected hex sheet(s). If the
factor keyword is used, the length of the smallest edge in the hex sheet is determined and any edge in the hex sheet with
a length greater than the smallest length multiplied by the factor is refined. If the greater_than keyword is used, any edge
in the hex sheet with a length greater than the specified size is refined.

The intersect keyword is optional. It is used to more easily define multiple hex sheets to be refined. If the intersect
keyword is entered, the node and edge keywords are used to define a chord rather than a sheet (a chord is the two-
dimensional equivalent of the three-dimensional sheet). The chord will be limited to the surface(s) associated with the
nodes or edge entered, and all sheets intersecting the chord will be selected for refinement (see Figure 8). When the node
keyword is used with the intersect option, the nodes must define an edge on the surface of the mesh.

L 4 4

Figure 8. Refine mesh sheet intersect edge 1499 greater_than 6

The smooth keyword is also optional. When the smooth keyword is entered, the elements that have been refined are
smoothed in an attempt to improve element quality. Figure 9 shows the same command as Figure 8 with the addition of
the smooth keyword. Smoothing may or may not be beneficial, depending on the situation.

303

CUBIT 11.0 User Documentation

Figure 9. Refine mesh sheet intersect edge 1499 greater_than 6 smooth

Hex Sheet Drawing

Since refinement of hex meshes generally occurs by inserting hex sheets, tools have been provided to draw a specified
sheet or group of sheets.

This command draws a sheet of hexes that is defined by the edge or node pair.
Draw Sheet {edge <id> |[node <id_1> <id_2>}[mesh [list]] [color <color_name>] [gradient]

The following command draws the three sheets that intersect to define the given hex. These sheets are drawn green,
yellow, and red. To draw a specific sheet, list its color in the command.

Draw Sheet hex <id> [green] [yellow] [red][mesh [list]] [gradient]
The 'gradient' keyword for both commands draws the sheet in gradient shading according to the distance between
opposite hex faces that are parallel to the sheet. For the 'draw dicersheet hex ..." command, this option works only if one

sheet is being drawn.

The 'mesh' keyword will draw the hexes in the hex sheet. If the 'list' keyword is also given, the ids of the hexes in the
sheet will be listed.

Mesh Coarsening

Hexahedral Coarsening

CUBIT provides a limited number of options for coarsening hexahedral meshes. The options currently available for hex
coarsening rely on the hex sheet extraction process described in Mesh Refinement page. Removing a sheet from a
hexahedral mesh essentially means that a complete layer of hexes will be removed and the adjacent layers expanded to
take its place.

Extracting a Single Hex Sheet
The following command can be used to extract a single hex sheet.
Extract sheet { Edge <id> | Node <id_1> <id_2>}
The edge or node pair are used to define the sheet that will be extracted. Figure 3 below shows an example of extracting
a hex sheet. In this example the hex sheet is specified by the node pair highlighted in the images. Note that the entire

layer of hexes between the highlighted nodes has been removed and the neighboring layers have been expanded to take
its place.

304

CUBIT 11.0 User Documentation

Figure 3. Example of Hex Sheet Extraction

Note: Also see the Mesh Refinement section for a description of hex sheet drawing.

Extracting multiple sheets along a curve

Another option for extracting hex sheets can be done by specifying a curve at which to perform the sheet extraction
operations. In this case, multiple layers of hexes can be removed by specifying a curve perpendicular to the hex layers.
The command for coarsening perpendicular to a curve is as follows:

Coarsen Mesh Curve <id> Factor <value> [NO_SMOOTH|smooth]

Coarsen Mesh Curve <id> Remove {<num_edges>|edge <id_ranges>} [NO_SMOOQOTH|smooth]

Figure 4. Coarsening a mesh by extracting sheets perpendicular to a curve

The first option uses the Factor argument. The factor argument controls how much larger the edges will be on the curve.
For example, Figure 4 shows the coarsen mesh curve command used with a factor of 2. In this case, the command
attempts to make the mesh edges approximately twice the length relative to their original length along the curve.

The second option uses the Remove argument. With this option, a specified number of layers may be removed from the

mesh. This may be accomplished by indicating an exact number, or by providing a list of edge IDs that correspond to the
layers that will be removed.

305

CUBIT 11.0 User Documentation

The NO_SMOOTH|smooth option allows the user to improve the element quality after the sheet extraction process by
smoothing the remaining nodes. The default for both of these commands is to not smooth. Smoothing may also be
accomplished after sheet extraction by using the smooth volume command.

Uniform hex coarsening

By applying the coarsen mesh curve command multiple times to curves that are orthogonal in the model, the effect of
uniform coarsening of the mesh may be achieved.

Collapsing Mesh Edges

CUBIT currently offers several options for modifying an existing finite element mesh. In addition to providing for
coarsening and refining of hexahedral and triangle meshes, CUBIT can also reposition nodes by smoothing or by moving
individual nodes.

The collapse edge command is also provided for making small modifications to an existing triangle mesh.
Meshedit Collapse Edge <id>
This command will collapse the two triangles associated with the given edge, effectively removing the triangles from the

mesh. This command only works on surface meshes, and only with triangles. If volumetric elements, or quads, are
attached to the edge, the command does nothing to the mesh.

Node and Nodeset Repositioning

A capability to reposition nodesets and individual nodes is provided. This capability will retain all the current connectivity of
the nodes involved, but it cannot guarantee that the new locations of the moved nodes do not form intersections with
previously existing mesh or geometry. This capability is provided to allow the user maximum control over the mesh model
being constructed, and by giving this control the user can possible create mesh that is self-intersecting. The user should
be careful that the nodes being relocated will not form such intersections.

The user can reposition nodes appearing in the same nodeset using the NodeSet Move command. Moves can be
specified using either a relative displacement or an absolute position. The command to reposition nodes in a nodeset is:

Nodeset <nodeset_list> move <delta_x> <delta_y> <delta_z>
Nodeset <nodeset_list> move to <x_pos> <y_pos> <z_pos>

The first form of the command specifies a relative movement of the nodes by the specified distances and the second form
of the command specifies absolute movement to the specified position.

Individual nodes can be repositioned using the Node Move command. Moves are specified as relative displacements.
The command syntax is:

Node <range> Move <delta_x> <delta_y> <delta_z>
Node <range> Move {[X <val>] [Y <val>] [Z <val>]}

Nodes can also be repositioned using a location specification. See Location, Direction, and Axis Specification for details
on the location specification. The command syntax is:

Node <range> Move Location <options>

See also Transforming Mesh Coordinates.

Deleting, Creating and Merging Mesh Elements

The following forms of the detete, create, and merge commands operate on meshed entities only. They allow low-level
editing of meshes to make minor corrections to a mostly correct mesh. They are not designed for major modifications to
existing meshes. Because Cubit's display routines were not designed with these type of operations in mind, these
commands may cause the current display of the affected entities to take an unexpected form. An apropriate drawing
command can used to return the display to the desired view.

306

CUBIT 11.0 User Documentation

Deleting Mesh Elements

The delete command removes one or more mesh entities from an existing mesh. Additional mesh entities may be deleted
as well depending on the particular form of the command. Exactly which entites are removed is explained in the following
descriptions.

Delete {Hex|Tet} <range>
Deletes the specified hexes or tets. No other mesh entities are affected.

Delete {Face|Tri} <range>

Deletes the specified faces or tris. For faces, all hexes that contain the face are also deleted. For tris, all tets that contain
the tri are also deleted.

Delete Edge <range>
Deletes the specified edges. Any associated tris, faces, hexes, and tets are also deleted.
Delete Node <range>

Deletes the specified nodes. Any associated edges, tris, faces, hexes, and tets are also deleted.

Creating Mesh Elements

The create command uses existing mesh nodes to create new mesh entities.

Creating Hex and Tet Elements

Create {Hex|Tet} Node <range> [Owner Volume <id>]
Using the nodes specified, this form of the command creates a new hex or tet that will be owned by the specified volume.
For a hex, 8 nodes are required. The order in which the nodes are specified is very important. They should describe two
opposing faces of the hex; the normal of the first face should point into the hex and the normal of the second face should

point out of the hex. For example, to create the hex shown in Figure 1 below, the following command would be entered:

create hex node 1,2,3,4,5,6,7,8 owner volume 1

307

CUBIT 11.0 User Documentation

M Cubit 10.1b (1) [C:\cubitclarobuild'claro)bin'deb

Figure 1. Node Numbering for the Create Hex command

To create a tet, 4 nodes are specified. The base is specified as a tri with the normal point toward the fourth node using the
right hand rule. To create the tet shown in Figure 2, the following command would be entered:

create tet node 1,2,3,4 owner volume 1

308

CUBIT 11.0 User Documentation

B Cubit 10.1b (1) [C\cubitclarobuild\claro\bin' debug cub] =101 =1

Figure 2. Node ordering for Create Tet Command

Creating Face and Tri Elements
Create {Face|Tri} Node <range> [Owner {Volume|Surface} <id>]
The next form of the command creates a face or tri that will be owned by the specified volume or surface. Four nodes are

specified for a face, three nodes for a tri. The nodes should be specified in the order needed to produce a face or tri with
the normal in the desired direction using the right hand rule.

Creating Edge Elements
Create Edge Node <range> [Owner {Volume|Surface|Curve} <id>]

This form of the command creates an edge that will be owned by the specified volume, surface, or curve. Two nodes must
be specified; order is unimportant.

Creating Nodes
Create Node Location <x> <y> <z> Owner {Volume|Surface|Curve|Vertex} <id>

The last form of the command creates a node at the specified location that will be owned by the specified volume, surface,
curve, or vertex. The location is specified by three absolute values that represent the position of the node in 3D space.

309

CUBIT 11.0 User Documentation

Merging Nodes

The merge node command is used to join two mesh entities one node at a time. It should be used with care because
merging nodes of different meshed entities may have unpredictable results. The syntax is:

Merge Node <id1> <id2>

The merge node command replaces the node specified as id1 with the node id2. The command is equivilent to deleting
node id1 and creating node id2 in the same location. The resultant merged node takes on the characteristics of the
replaced node such as position and owner. This may include some or all of the higher level mesh entities related to the
merged node.

Caution should be taken when using the merge node command because other commands involving the related meshed
entities may not work properly following the merge.

Align Mesh

At times it is desirable to have identical meshes on two different surfaces or curves. The align mesh command will attempt
to assign correspondence between nodes on surfaces or curves and move the nodes on one surface or curve to match
the configuration on the other. The command syntax is:

Align Mesh Surface <id> [CloseTo] Surface <id> [Tolerance <tol>]
Align Mesh Curve <id> [CloseTo] Curve <id> [Tolerance <tol>]

These two commands align the mesh on the first entity with that of the second entity. This means that nodes on the first
entity will be moved to the closest location possible to their corresponding nodes on the second entity. This is done
without regard to mesh quality, so it is possible to invert elements with this command.

Align Mesh Node <id> [CloseTo] Node <id> [Tolerance <tol>]

This command aligns the first node with the second node, within the limits of the geometric entities that own the nodes.
This is also done without respect for element quality.

And example of this is given as follows:

brick x 10

volume 1 copy move 11

surface all except 10 6 vis off
transparent

graphics perspective off

at 5.552503 3.832384 0.134127

from 34.651051 3.640138 -0.193121

up 0.006514 0.999945 -0.008172 mesh surface all
surface 6 smooth scheme randomize free
smooth surface 6

node 432 move 0 0-0.2

align mesh node 944 node 432

node 432 move 00 0.4

align mesh curve 23 closeto curve 12
align mesh surf 10 closeto surf 6

Mesh Validity

After a mesh is generated, it is checked to ensure that the mesh has valid connectivity. If an invalid mesh is formed, then
CUBIT automatically deletes it. This default behavior can be changed with the following command:

Set Keep Invalid Mesh [on]off]
The current behavior can be viewed with the following command:
List Keep Invalid Mesh

The Jacobian quality metric is also computed automatically to check quality after a mesh is generated. If the quality is
poor, a warning is printed to the terminal.

310

CUBIT 11.0 User Documentation

Mesh Adaptivity and Sizing Functions

CUBIT provides several options for controlling the density of a mesh by adapting to various geometric, analysis, or user-
defined properties. Interval sizes are defined automatically, explicitly, or through sizing functions. The sizing functions can
be based on the physical features of the model, a previous analysis solution, or a user-specified bias. Adaptivity can apply
to meshing either curves or surfaces.

Adaptive Curve Meshing

CUBIT provides several ways to adaptively mesh curves. Three curve meshing schemes are provided for this purpose.
They include the following schemes:

Curvature
FeatureSize
Stride

The first two schemes use characteristics of the geometric model to define element sizes. The third scheme uses a field
function typically defined from a previous analysis solution. FeatureSize is an alpha feature and should be used with
caution.

Adaptive Surface Meshing

Adaptive surface meshing in CUBIT produces a function following mesh which sizes elements based on the value of the
driving function at the spatial location at which the element is to be placed. Adaptive surface meshing is performed using
the paving, triadvance or tridelaunay algorithms in combination with an appropriate sizing function. The types of sizing
functions that can be used are

Bias Sizing
Constant Sizing
Curvature Sizing
Linear Sizing
Interval Sizing
Inverse Sizing
Super Sizing

Test Sizing
Exodus-based field function

Geometry Adaptive (Skeleton Sizing)

Super sizing and test sizing functions are alpha features and should be used with caution.

The procedure for adaptively meshing a surface is to designate paving, triadvance or tridelaunay as the mesh scheme for
that surface, assign sizing function types, and mesh the surface.

The command syntax of these commands is:
Surface <id > Scheme {Pave|TriAdvance|TriDelaunay}
then

Import Sizing Function '<exodusll_filename>' Block <block_id> Variable '<variable_name>"'
Time <time> [Deformed]

Surface <id> Sizing Function [Type] Exodus [Min <min_value> Max <max_value>]
or

Surface <id> Sizing Function [Type]
{Constant|Curvature|Interval|lnverse|Linear|Super|Test|None}]

or

311

CUBIT 11.0 User Documentation

Surface <id> Sizing Function [Type] Bias Start Curve <id_range> {Finish Curve <id_range>|
Factor <val>}

then

Mesh Surface <id>

Adaptive Volume Meshing

Adaptive volume meshing in CUBIT produces a function following mesh that sizes elements based on the value of the
driving function at the spatial location at which the element is to be placed. Adaptive volume meshing is performed using
the tetmesh scheme in combination with an appropriate sizing function. The types of sizing functions that can be used are
constant, test and geometry adaptive. Test sizing is an alpha feature and should be used with caution. Other sizing
functions will be added in future versions of Cubit.

The procedure for adaptively meshing a volume is to designate tetmesh as the mesh scheme for that volume, assign
sizing function types, and mesh the volume.

The command syntax of these commands is:
Volume <id> scheme tetmesh
Volume <id> Sizing Function [Type] {Constant|Test|None}
Mesh Surface <id>
The following sections describe details of the various volume sizing methods.

(] Constant Sizin

(] Test Sizing
(] Geometry Adaptive Sizing

Geometry Adaptive Sizing Function (Skeleton
Sizing)

The Geometry Adaptive Sizing Function, also referred to as the Skeleton Sizing Function (Quadros 2005; Quadros
2004; Quadros 2004(2)), automatically generates a mesh sizing function based upon geometric properties of the model.
This sizing scheme attempts to create a sizing function that allows unstructured meshing schemes to generate a mesh
with the following properties:

® The sizes of the mesh elements vary smoothly throughout the mesh
e The mesh elements resolve the geometry to a sufficient degree
e The mesh elements do not over-resolve the geometry.

The geometry adaptive sizing function can be used to create sizing information for surfaces, solids, and assemblies.

This sizing function uses geometric properties to influence mesh size. The scheme calculates or estimates:

3D-proximity (thickness though the volume)
2D-proximity (thickness across a surface)
1D-proximity (curve length)

Surface curvature

Curve curvature.

These properties are then used to calculate a sizing function throughout the geometric entity (or entities). Regions of
relatively high complexity will have a fine mesh size, while regions of relatively low complexity will have a coarse mesh
size. For example, generally, a high-curvature region on a surface will have a finer mesh size than a low-curvature region
on that surface

312

CUBIT 11.0 User Documentation

Input CAD Model

Eackgruund
Octree Grid

Source entity

Source entity

Mesh Generator

Figure 1: Overview of Computational Framework

Cu:-arse mesh-: Iﬁdﬁﬁ,ﬂ

Iatthlck region

........... o e
L CEas
:‘:f A ""I—}‘f

&9 [»]a/n]x]

1 Skeleton =sizing: :
v Geometry - |
L] 1
i 1

L adaptive
i — - S A L L -
o b mpettelich et
| Fine meshat ! e I ————
g
- ; |
s TN]
rEmmm s ——
————————— |
Smaath N | | |
transition n,,---- e o o :'.\. oy
_____________ "y Advanced GUI 0
o Fm'\-r Ty e ! [l . 1
i ey e - : L |:|Fft|':|n5 :
Repar e e senatipeemer B [a1 o e o o
CForzierm e B
"y (!
=)

Figure 2:

Skeleton Sizing Function example in the GUI

313

CUBIT 11.0 User Documentation

Skeleton Sizing Behaviors

Skeleton sizing can be specified on single or multiple surface(s)/volume(s) at a time from the GUI (Meshing Control Panel)
or the command-line. The following describes how specifying sizing on entities can change skeleton sizing’s behavior:

Single surfaces/volumes — If skeleton sizing is applied to surfaces/volumes one at a time, each entity’s sizing is not
influenced by the others. On the command-line, issue a separate command for each entity. In the GUI, specify only one
surface or volume before selecting “Apply Size”.

Multiple surfaces — If skeleton sizing is applied on multiple surfaces together, then geometric features of a particular
surface may affect its neighboring surfaces.

Multiple volumes (assembly sizing) — Skeleton sizing can be applied to assembly models so that geometric features of a
volume may influence its neighbors. Volumes should first be imprinted and merged before they are specified together for
skeleton sizing.

Command Line Syntax

Skeleton sizing on surfaces:

Surface Sizing Function Skeleton

{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]

[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>]
[min_num_layers_2d <1to N =1>] [min_num_layers_1d <1to N = 1>]
[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]

[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

Skeleton sizing on volumes:

Volume Sizing Function Skeleton

{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]

[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>]
[min_num_layers_3d < 1to N =1>] [min_num_layers_2d <1to N = 1>]
[min_num_layers_1d <1to N =1>]

[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]

[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

The options are explained below:

Basic Arguments

® max_size (default=auto): The value for max_size is calculated automatically by default. Users can specify any
positive real number based on the dimensions of the model to control the max size of the elements. If the
skeleton sizing function creates large elements, than this argument can be used to control the maximum
element size.

® min_size(default=auto): The value for min_size is calculated automatically by default. Users can specify any
positive real number based on dimension of the model to specify the minimum size of the elements.

e max_gradient (1.0 to 3.0, default 1.5): The transition in element size is controlled using this parameter. Larger
values of max_gradient result in fewer elements, but also lead to more abrupt transitions in size and possibly
poorer quality elements.

Scaling and Accuracy Arguements:

e scale (1to 10, default 7): The overall size of the elements is controlled by this argument. A coarser mesh can
be generated by increasing the value of scale up to 10.0. To get a finer mesh, decrease the value of the scale
(minimum value = 1).

e time_accuracy_level (1 to 3, default 2): This controls the computational time and accuracy level by adjusting
various internal parameters of the skeleton sizing function. Users should try levels in increasing order. Level 1
takes the shortest time to compute the skeleton sizing function and Level 3 takes the longest time to compute
the skeleton sizing function. However, Level 1 is less accurate than Level 2 and Level 3.

314

CUBIT 11.0 User Documentation

Advanced Arguments

Lattice Arguments:

The skeleton sizing function is generated and stored on a background octree grid whose cells are subdivided based on
the graphics facets of the model. The level of subdivision of the background grid affects how well the sizing function
captures the geometric complexity of features. Reasonable defaults have been selected for the following two refinement
(subdivision) parameters, but these may be overridden for use with simple (decrease parameters) or more complex
(increase parameters) models.

e min_depth (default 4): min_depth controls the maximum cell dimension of the background octree grid. The
higher the value of min_depth, the smaller the dimension of the maximum-sized cell. Computational time
increases with increasing min_depth

e max_depth (default 6): max_depth controls the minimum cell dimension. If the object contains very fine
features then increasing the value of max_depth is suggested. The maximum depth has been limited to 9

Note: These arguments override the basic arguments. For example, time accuracy level 1 internally sets min_depth = 4
and max_depth = 6, and when min_depth is set to 4 and max_depth is set to 7 in the advanced options (recommended
for models with fine features), then advanced options override the basic options. In the command-line, to override the
depths set by a time_accuracy_level, specify min_depth and max_depth after it.

Source Entity Arguments

e min_num_layers_3d (Any value greater than 1, default 1): This parameter ensures that a minimum specified
number of layers exist across the thickness of the volume. This parameter could be useful in generating
meshes for mold flow simulation.

e min_num_layers_2d (Any value greater than 1, default 1): This parameter ensures that a minimum specified
number of layers exist across the thickness of a surface.

e min_num_layers_1d (Any positive integer value, default 1): This ensures that any curve contains a minimum
specified number of intervals.

e max_span_ang_curve (Range 5.0 to 75.0, default 45.0): Maximum spanning angle is a parameter that controls
the mesh size at curved regions of curves. It is defined as the angle subtended by the normals at the end nodes
of the mesh edge in the curved region of a curve. When a finer mesh is needed at curved regions of curves,
then max_span_ang_curve should be decreased.

e max_span_ang_surf (Range 5.0 to 75.0, default 45.0 deg): Maximum spanning angle is a parameter that
controls the mesh size at curved regions of surfaces. It is the angle subtended by the normals at the end nodes
of the mesh edge in a curved region of a surface. When a finer mesh is needed at curved regions of surfaces,
then max_span_ang_surf should be decreased.

Skeleton with Other Sizing Controls

Skeleton sizing function produces a smooth sizing function when called with other sizing controls available in Cubit.
Skeleton sizing function behaves as SOFT firmness level. Skeleton sizing function always respects interval count
specified on the curves. Skeleton sizing function respects interval size on curves and surfaces only if it is specified after
calling the skeleton sizing function.

315

CUBIT 11.0 User Documentation

Interval size on a top surface

Fine mesh at
High Curvature
Fegion

Caarse mesh at

thick section
Graded tet mesh generated using Graded tet mesh generated using Skeleton
Skeletan sizing funciton sizing function and Interval size on tap suface
Figure 3: Skeleton sizing function with other sizing controls
Limitations

e Currently, the skeleton sizing function is primarily intended for use with ACIS models. Skeleton sizing may be
used on facet-based models (STL, facet, and MBG format) models, but results are not guaranteed. Sizing
function generation with other geometry engines in Cubit such as Granite/ProE is not guaranteed or supported
in Cubit 10.1.

® The skeleton sizing function has mainly been tested with trimesh and tetmesh schemes. In general, structured
or semi-structured meshing schemes do not have enough flexibility to utilize the skeleton sizing function. Itis
recommended that the skeleton sizing be used only with unstructured meshing schemes. However, if using
skeleton sizing in conjunction with the pave scheme for surfaces, decreasing the max_gradient and scale
arguments is suggested.

e For sizing function generation of assemblies in Cubit 10.1, at least time_accuracy_level 2 is generally
recommended. This helps ensure that the geometric complexity of small features is captured. For example,
“volume all sizing function skeleton time_accuracy_level 2”

Bias Sizing Function

Syntax:

Surface <id> Sizing Function Type Bias Start Curve <id_range>
{Finish Curve <id_range>| Factor <val>}

Synopsis:

The Bias sizing function for surfaces is similar to biasing curves. Indeed, setting a bias sizing function for a surface will
bias the boundary curves, as well as control paving to follow the bias inside the surface. You first specify the size of a
couple of bounding curves (the start curves), then specify the bias sizing function for the surface.

Discussion:

Recall that for biasing curves, you specify the start and end vertex. For the bias sizing function, you specify the start
curves, from which to bias away. The sizes of these curves should already be set before setting the surface sizing

function since their average size is taken to be the starting size (almost). If the start curve sizes change, then you should
set the surface sizing function again.

316

CUBIT 11.0 User Documentation

You can either supply a geometric factor, or the set of finish curves whose sizes you want to match at that distance. A
geometric factor. It automatically sizes and biases or dualbiases the non-start curves, including any finish curves. These
curves need not be perpendicular to the starting curves. The interval count and scheme are soft-set, so they won't be
changed if they are already hard-set. If the size of the start curves or finish curves are changed, then the sizing function
command should be re-issued.

The sizing function value at a point is defined in terms of the straight-line distance from the point to the closest starting
curve. So, it works best if all the starting curves have the same size, and the surface is relatively flat. But, starting curves
need not be parallel to one another. Similarly, the non-start curves need not have any particular orientation wrt the start
curves.

The bias sizing function was designed to easily set the sizes of a sequence of adjoining surfaces: assign a size to the
curve you want to bias away from, then set the bias sizing function of the first surface, with its finish curves being the start
curve of the second surface, etc. See the last example below.

Examples:
Here are some example journal files and resulting pictures:

bias_sz_fn_demo.jou

brick x 100y 10 z 10

color vol 1 red

surface 1 scheme pave

surface all except 1 visibility off
label curve interval

graph text 2

display

#mesh 1

curve 4 size 2

surface 1 sizing function type bias start curve 4 factor 1.3
mesh surface 1

see figure 1

Figure 1. Surface with bias sizing function factor > 1.

mesh 2

delete mesh

surface 1 sizing function type bias start curve 4 factor {1/1.1}
mesh surface 1

see figure 2

[EENEC
|

e
[~ A 'E'}_’Lf"

1
i 1 mnEERRER T

11
1

Figure 2. Surface with bias sizing function factor < 1

mesh 3

reset

cylrad6z1
cylrad4z1

sub 2 from 1

section body 1 yplane
section body 1 xplane
surf all except 19 vis off
color vol 1 red

display

317

CUBIT 11.0 User Documentation

finish curve mesh

surf 19 scheme qtri base scheme pave

surface 19 size 0.7

curve 26 size 0.07

surface 19 sizing function type bias start curve 26 finish curve 25
mesh surface 19

pause

see figure 3

z

/)
ﬂ;#%?ﬁ = {év‘$ -.

W 5

..........

Figure 3. Surface with bias sizing function start and finish curve. Scheme qtri, base scheme pave.

dual bias mesh

delete mesh

curve 25 26 size 0.02

curve 25 26 scheme equal

surface 19 sizing function type bias start curve 26 25 factor 1.3
mesh surface 19

zoom curve 12

pause

see figure 4

318

CUBIT 11.0 User Documentation

Figure 4. Close up of surface with dual bias sizing function start and finish curve. Scheme qtri, base scheme pave.

funny face

reset

prism sides 5z 1radius 1
cylinder radius 0.1z 1

body 2 move -0.400

subtract 2 from 1

cylinder radius 0.1z 1

body 3 move 0.200

subtract 3 from 1

prism sides 6 radius 0.2z 1
body 4 move 0-0.40

subtract 4 from 1

surface all except 34 visibility off
color vol 1 red

display

surface 34 scheme pave

curve 23 19 size 0.01

surface 34 sizing function type bias start curve 19 23 factor 1.3
mesh surface 34

see figure 5

319

CUBIT 11.0 User Documentation

320

Figure 5. Bias away from two round holes.

bias surface chain

reset

cylinder radius 1z 1

cylinder radius 0.2z 1

cylinder radius 0.4z 1

cylinder radius 0.8z 1

imprint body all

delete body 234

section body 1 xplane

section body 1 yplane

surface all except 42 43 44 45 vis off

color volume 1 red

surface all scheme pave

curve 55 interval 36

surface 43 sizing function type bias start curve 55 factor 1.3
surface 44 sizing function type bias start curve 57 factor 1.3
curve 57 had its size determined by a prior bias sizing function
surface 45 sizing function type bias start curve 58 factor 1.3
surface 42 sizing function type bias start curve 55 factor 1.3
mesh surface 42 43 44 45

display

highlight curve in surface 42 43 44 45

see figure 6

[[]]

CUBIT 11.0 User Documentation

Figure 6. A chain of biased surfaces. Only one curve's intervals were explicitly set.

Constant Sizing Function

Syntax:
Surface <id> Sizing Function [Type] Constant
Volume <id> Sizing Function [Type] Constant
Synopsis:

The Constant sizing function specifies that a constant element size be used over the interior of the surface or volume.
The value used as the constant size is the interval size that has been set for the entity. For example, the following
commands will cause the mesh size to be smaller on the interior than on the surface's bounding curves.

reset

brick x 10

surface 1 scheme pave

curve in surface 1 interval 5
surface 1 size 0.5

surface 1 sizing function constant
mesh surface 1

321

CUBIT 11.0 User Documentation

Figure 1. Constant Sizing Function

Curvature Sizing Function

The Curvature sizing function determines element size based on the curvature evaluation of a surface at the current
location. Two surface curvature values (taken perpendicular to each other) are compared at the location of interest, and
the largest is used as the sizing function for the mesh. Figure 1 shows a solid with a highly deformed surface which
displays rapid change of surface curvature at several locations.

Figure 1. NURB solid with high surface curvature change

Figure 2 depicts a normal paved mesh of this surface using a common size on all bounding curves and no sizing function
in the interior. The total number of quadrilateral shell elements for this case is 1988. Figure 3 shows a mesh which was
generated with the curvature sizing function option. The mesh is graded denser in the regions of quickly changing
curvature, such as at the tops of the hills and at the bottom of the valley. Due to the intense interrogation of the underlying
geometric modeler which the curvature method relies on, this option can be very computationally expensive.

322

CUBIT 11.0 User Documentation

Figure 3. NURB mesh with curvature sizing function

Linear Sizing Function

The Linear class of sizing functions determines element size based on a weighted average of edge lengths for mesh
edges bounding the surface being meshed. There are several variants of this class of sizing function. The Linear function
bases edge length at a location on the lengths of edges bounding the surface weighted by their inverse distance from the
current location. The result of this weighting is a more gradual change in mesh density during a transition between dense
and coarse mesh. Figure 1 shows the same NURB surface mesh but with intervals of 34 on two curves and intervals of 16
on the remaining two bounding curves and no sizing function. It can be observed that the mesh progresses more rapidly
inward from the coarser meshed curves, which locates the transition region much closer to the finer meshed curves. To
combat this, the Linear function weights the sizing of new elements such that these transitions occur slower. Figure 2
displays two views of the same NURB geometry with the same bounding curve mesh density using the linear sizing
function.

323

CUBIT 11.0 User Documentation

~7

<25

V Ou 0
A
z 2SN dllinvey
e
Sl
S

Figure 2. NURB mesh with linear sizing function, 34 by 16 density

324

CUBIT 11.0 User Documentation

Interval Sizing Function

The Interval sizing function is similar to the Linear function, but bases edge length at a location on the squared lengths of
edges bounding the surface weighted by their inverse distance from the current location. An example is shown below.

y W, .’.-'“\!,.,‘_.
AT R Ao,
i L e o
A TSR
S 2o s
SR R

X .
e
g o

Figure 1. NURB mesh with interval sizing function, 34 by 16 density

Inverse Sizing Function

The Inverse sizing function is also similar to the Linear function, but this method bases edge length at a location on the
inverse lengths of edges bounding the surface weighted by their inverse distance from the current location (see Figure 1).
The difference between the three linear sizing functions (Linear, Interval, Inverse) is sometimes subtle, but is driven by the
geometry being meshed since the influence of these functions is strongly controlled by the number, positioning, and mesh
density of the bounding curves relative to the interior surface area.

325

CUBIT 11.0 User Documentation

\)
0

N

e
S
S
T, Ee ke

X
-

-
~i‘

=
(it

L]
L]
-,':.4:
i

2
U
;-.-J- -.=
-:.P‘
5
iy,

--'
A

T

iy

&7

e
e
LT
7o

L7
77
LT -
e

i,

L7
i,

i T
227
iy
=
i
i
c_
s
A,
g

=L
e

o,
L2

it
o
S

W

BN
ERCESE,

T
ﬁ'&@;
e
ey s
o

Figure 1. NURB mesh with inverse sizing function, 34 by 16 density

Exodus ll-based Field Function

The ability to specify the size of elements based on a general field function is also available in CUBIT. With this capability
the desired element size can be determined using a field variable read from a time-dependent variable in an Exodus file.
Either node-based or element-based variables can be used. Importing a field function and associating it with a surface,

and normalizing that function are done in two separate steps to allow renormalization without having to read the mesh in
again. Currently, field functions are imported from element and node-based Exodus Il data. Thus, a field function is a

time-dependent element variable in an Exodus Il file. The mesh block containing the corresponding elements must be
imported along with the field function data. For details on the adaptive paving algorithm, see [Blacker, 90]. Exodus
variable-based adaptive paving is accomplished in CUBIT in several steps:

1. Surface mesh scheme set to Pave. Bounding curve mesh schemes can also optionally be set to Stride.
2. An Exodus mesh and time-dependent variable for that mesh is read into CUBIT.
3. The mesh and variable data are associated to geometry.
4.
designated.
5.

The Exodus variable is normalized to give localized size measures, and the surface sizing function type is
Surface is meshed.

The following command is used to read in a field function and its associated mesh:

326

CUBIT 11.0 User Documentation

Import Sizing Function '<exodusll_filename>' Block <block_id> Variable “<variable_name>'
Time <time_val> [Deformed]

where <block_id> is the element block to be read, <variable_name> is the Exodus time-dependent variable name (either
element-based or nodal-based), and <time_val> is the problem time at which the data is to be read, the Deformed
keyword indicates whether deformation has been accounted for on the new model (for information on creating deformed
2D geometry from EXODUSII data, see Importing EXODUSII Files) and needs to be accounted for in the sizing function
data. When this command is given, the nodes and elements for that element block are read in and associated to geometry
already initialized in CUBIT.

Note that when a sizing function is read in, the mesh is stored in an ExodusMesh object for the corresponding geometry,
and therefore the geometry is not considered to be meshed. Also note that if deformation is not being modelled, the
geometry to which the mesh is being associated must be in the same state as it was when that mesh was written (see
Mesh Importing and Duplicating for more details on importing meshes).

Once the field function has been read in and assigned to a surface, it can be normalized before being used to generate a
mesh. The normalization parameters are specified in the same command that is used to specify the sizing function type
for the surface. The syntax of this command is:

Surface <id > Sizing Function Type Exodus [Min <min_val> Max <max_val>]

If normalization parameters are specified, the field function will be normalized so that its range falls between the minimum
and maximum values input. Subsequent normalizations operate on the normalized data and not on the original data. If an
element-based variable is used for the sizing function, each node is assigned a sizing function that is the average of
variables on all elements connected to that node. Nodal variables are used directly.

After the sizing function normalization, the surface can be meshed using the normal meshing command.

For example, the left image in Figure 1 depicts a plastic strain metric which was generated by PRONTO-3D [Taylor, 89] a
transient solid dynamics solver, and recorded into an Exodusl| data file. When the file is read back into CUBIT, the paving
algorithm is driven by the function values at the original node locations, resulting in an adaptively generated mesh
Attaway, 93]. The right image in Figure 1 depicts the resulting mesh from this plastic strain objective function.

Figure 1. Plastic strain metric and the adaptively generated mesh

Curve Meshing with Exodus Il - based Field Functions

In addition to the capability to adaptively mesh surface using a field function, curves may also be meshed separately using
the Exodus Il information. The Stride scheme for meshing curves is used for this purpose.

Mesh Deletion

Meshing a complex model often involves iteration between setting mesh parameters, meshing, and checking mesh
quality. This often requires removing mesh, for only an entity or for an entity and all its lower order geometry, or
sometimes for the entire model.

The command to remove all existing mesh entities from the model is:

Delete mesh

The command for deleting mesh on a specific entity is:

327

CUBIT 11.0 User Documentation

Delete mesh {geom_list} [Propagate]
These commands automatically cause deletion of mesh on higher dimensional entities owning the target geometry.

If the Propagate keyword is used, mesh on lower order entities is deleted as well, but only if that mesh is not used by
another higher order entity. For example, if two surfaces (surfaces 1 and 2) sharing a single curve are meshed, and the
command "delete mesh surface 1 propagate" is entered, the mesh on surface 1 is deleted, as well as the mesh on all the
curves bounding surface 1 except the curve shared by surface 2. In some cases, the capability to delete individual mesh
faces on a surface is needed. Deleting a mesh face involves closing a face by merging two mesh nodes indicated in the
input. The syntax for this command is:

Delete Face <face_id> Node <node_id> [Node <diagonal_node_id>]
This command is provided primarily for developers' use, but also provides the user fine control over surface meshes. At

the present time, this command works only with faces appearing on geometric surfaces and should be used before any
hex meshing is performed on any volume containing the face to be deleted.

328

CUBIT 11.0 User Documentation

Importing and Exporting Files

Importing Geometr

Exporting Geomet

Importing an Exodus Il Mesh
Exporting the Finite Element Model

This chapter describes methods for importing and exporting geometry and mesh data within CUBIT. CUBIT supports
ACIS and Granite solid model geometry internally. Built-in translators can convert IGES and STEP files into ACIS or
Granite geometry formats. CUBIT also supports mesh-based geometry. Facet or STL files can be imported as mesh-
based geometry.

Mesh files can be imported as a free mesh, or associated with existing ACIS or mesh-based geometry in CUBIT. Finite
element data is exported as Exodus Il data files or ABAQUS files.

Importing Geometry

Importing ACIS Models
Importing FASTQ Models
Importing STEP Files
Importing IGES Files
Importing Facet Files
Importing Granite Models
Other Formats

Other Formats

Internally, CUBIT represents geometry as either ACIS solid model geometry, Granite solid model geometry, or mesh-
based geometry. CUBIT can import ACIS geometry in the native "sat" file format. CUBIT can also import STEP and IGES
files and internally converts them into ACIS solid model geometry. For compatibility with Sandia legacy applications,
CUBIT can import FASTQ input decks to create ACIS geometry, as well. If you have geometry that has been created in
another format, such as in SolidWorks, you will need to translate that geometry into something that Cubit can read. Many
solid modeling packages have an Export ACIS .sat command, which is probably the easiest way of translating your
model. If you do not have that option, there are some other possibilities.

e Try a different file format, such as STEP or IGES.
® As alastresort, contact the Cubit team. They might have other options for importing your file.

See Also

Importing a Mesh

Importing ACIS Files

The command used to read an ACIS file is:

Import Acis '<acis_filename>' [no_bodies][no_surfaces] [no_curves][no_vertices][Group
{'<name>'|<id>}] [binary|ascii] [sort] [XML]

The import ACIS command is the primary mechanism for generating geometry within CUBIT. ACIS parts can be
generated and saved with CUBIT, but in most cases are developed within a 3rd party CAD package and exported for use
in CUBIT. CUBIT provides the capability to import ACIS solid models and make modifications to them so they can be
meshed. CUBIT incorporates the commercial ACIS libraries developed and maintained by Spatial Inc. for reading and
writing ACIS format files. IGES and STEP format files can also be imported and exported to/from CUBIT using the
Spatial's libraries.

The following options can be used when importing an ACIS file.

329

CUBIT 11.0 User Documentation

[no_bodies][no_surfaces] [no_curves][no_vertices]

It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

[group]

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

[binary|ascii]

The import capability of ACIS files supports both the ASCII format (.sat) and binary format (.sab). When importing, the
filename extension will determine the default file type, be it ASCII or binary. A (.sat) extension will default to ASCII, while a
(.sab) extension will default to binary. If you use a different file extension you can specify the type with the [binary|ascii]
option. Binary files can be significantly faster but are not guaranteed to be upward compatible, nor cross-platform
compatible (although testing has determined compatibility between NT and HP/UX). Therefore, it is recommended that
models be archived in ASCII format.

[sort]

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The sort
option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as the
compress ids sort command, but combines it with the import command to remove a step in the process.

[XML '<xml_filename>']

This option will read assembly information and other metadata from an XML file in the DART metadata XML format. See
the metadata documentation and the Analyst's Home Page for details.

Importing ACIS files at startup

ACIS files can also be imported using the "-solid" option when starting CUBIT from the UNIX command prompt. (See
Execution Command Syntax for details.) Note that the filename must be enclosed in single or double quotes. This
command will create as many bodies within CUBIT as there are bodies in the input file.

See also Exporting ACIS Files.

Importing FASTQ Files

CUBIT can read a FASTQ file and convert it into an ACIS model:

Import Fastq '<fastq_filename>'
Note that the filename must be enclosed in single or double quotes.

FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands much like a CUBIT journal file.
All FASTQ commands are fully supported except for the "Body" command (it is unnecessary and ignored), the "corn”
(corner) line type, and some of the specialized mapping primitive "Scheme" commands. Standard mapping, paving, and
triangle primitive scheme commands are handled. The pentagon, semicircle, and transition primitives are not handled
directly, but are meshed using the paving scheme. The FASTQ input file may have to be modified if the Scheme
commands use any non-alphabetic characters such as "+, (", or °)". Circular lines with non-constant radius are generated
as a logarithmic decrement spiral in FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to generate three dimensional
geometry. CUBIT supports sweeping options to convert imported FASTQ geometries into volumetric regions.

Importing STEP Files

The ACIS STEP translator provides bi-directional functionality for data translation between ACIS and the file format
standard STEP AP203.

330

CUBIT 11.0 User Documentation

STEP AP203 is an international standard which defines a neutral file format for representation of configuration control
design data for a product.

Prior to importing a STEP file for the first time into CUBIT, the STEP toolpath must be set. See Setting up CUBIT to use
STEP tools for a description of how to do this.

The command used to import a STEP file are:

Import Step '<step_filename>' [no_bodies][no_surfaces] [no_curves] [no_vertices]

[HEAL|noheal] [logfile ['filename'] [display]] [Group {'<name>'|<id>}] [sort] [XML

'<xml_filename>']
The following describes the options that can be used when importing a STEP file:

[no_bodies][no_surfaces] [no_curves][no_vertices]
It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.
[HEAL|noheal]
As with ACIS file import, you can control which types of entities to read. By default, bodies are automatically healed when
imported - if this causes problems, you can disable this option by using the noheal argument. Also, you can optionally
request a detailed logfile of the conversion process and display it in a text editor.
[logfile ['filename']
Specify a filename where informational messages generated during import of the STEP file will be written.

[group]

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

[sort]

Normally the numerical IDs of the geometric entities contained in the STEP model are used directly within CUBIT. The
sort option provides the capability to compress the IDs read from the STEP file. The sort option does the same thing as
the compress ids sort command, but combines it with the import command to remove a step in the process.

[XML '<xml_filename>']

This option will read assembly information and other metadata from an XML file in the DART metadata XML format. See
the metadata documentation and the Analyst's Home Page for details.

Exporting a STEP file from Pro/Engineer
To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.
In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.

Also be sure your export option is set to Solids. If the geometry has problems in CUBIT, you may need to increase the
geometry accuracy in Pro/ENGINEER.

Setting Up CUBIT to Use STEP Tools

In order to use the STEP import and export functionality, Cubit needs to know where the STEP tools are. There are two
ways to do this:

1) Set the environment variable CUBIT_STEP_PATH to the correct path.

The correct path will be the path in the ACIS directories which ends in something like:

331

CUBIT 11.0 User Documentation

step/tools/xxx

where xxx would be the type of machine being used. An example path would be (for a Compaq Alpha machine)
lusr/local/leng_sci/cubit/acis/acis6.2/step/tools/osf

2) At the "CUBIT>" prompt type:
set steptools 'path/to/tools’

Note that the STEP import and export functionality might not be available on all 64-bit platforms.

See also Exporting STEP Files.

Importing IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between ACIS and the IGES (Initial
Graphics Exchange Specification) format.

The commands to import IGES files are:

Import Iges '<iges_filename>' [no_bodies] [no_surfaces] [no_curves] [no_vertices] [Group
{'<name>'|<id>}] [nofreesurfaces] [lodfile ['filename'] [display]] [sort]

The following describes the options that can be used when importing IGES files:
[no_bodies] [no_surfaces] [no_curves] [no_vertices]
It is possible to include free entities (vertices, curves and surfaces) in the file. Default operation is to read all entities in the

file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

[group]

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

[nofreesurfaces]

The nofreesurfaces option will automatically convert free surfaces to bodies. By default this option is off.

[logfile ['filename']]

Specify a filename where informational messages generated during import of the IGES file will be written.

[sort]

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The sort

option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as the
compress ids sort command, but combines it with the import command to remove a step in the process.

Manifold Solid B-rep Objects (MSBO)

This translator supports Manifold Solid B-rep Objects (MSBO) as well as Trimmed Surface Objects. By default, MSBO
objects (i.e., bodies) will be converted to trimmed surfaces. If you want to support MSBO objects during import, use this
command (the default is off):

set AcisOption Integer ‘iges_proc_msbo’ On
You can add this to your .cubit file so it is turned on during each session of CUBIT.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

See also Exporting IGES Files.

332

CUBIT 11.0 User Documentation

Importing Facet Files

CUBIT provides the capability to import a model composed of facets to create geometry. The command to import facets
from afile is:

Import [Facets|AVS|STL] "<filename>" [Feature_Angle] [LINEAR||Spline] [MERGE|no_merge] [make_elements]
[stitch] [improve]

Facets are simply triangles that have been stitched together to form surfaces. Facetted geometry representations are
commonly used for graphics, bio-medical, geotechnical and many other applications that output a discrete surface
representation. Upon import, the resulting geometry representation is Mesh-Based Geometry. Figure 1. shows an
example of a facetted model and the resulting geometry created in CUBIT.

Figure 1. Example of facetted model and the resulting solid model created in CUBIT from the facets.

For convenience, the import facet command currently supports three different formats, facet, AVS and STL

e Facet format: The facet file format is a simple ASCII file that contains vertex coordinates and connectivities.
The facet file format is described below.

e AVS format: The AVS format is a general geometry format that can support a variety of polygonal shapes. In
CUBIT's implementation of the AVS import, it will support only triangles.

e STL format: Perhaps the most common format in the industry is Stereolithography (STL). CUBIT supports both
ASCII and binary forms of the STL format. While the STL format is adequate for graphics and visualization, it
can be problematic for geometry applications such as CUBIT. Each triangle in the STL format is represented
independently. This means that multiple definitions of a single vertex are included in the file. CUBIT will attempt
to merge duplicate vertices to form a water-tight surface. In cases where the vertex locations may not
correspond exactly, an optional tolerance argument may be used on the import command. The tolerance
option is used only for STL format files.

333

CUBIT 11.0 User Documentation

Facet File Format

The format for the ASCII facet file is as follows

nm
idlx1ylzl
id2 x2 y2 z2
id3 x3y3 z3

idn xn yn zn

fidl id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]

fidm id<1> id<2> id<3> [id<4>]
Where:

n = number of vertices

m = number of facet

id<i> = vertex ID if vertex i

X<i> y<i> z<i> = location of vertex i
fid<j> = facet ID if facet |

id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the facets serve as the underlying
representation for the geometry. By default, the facets are not visible once the geometry has been imported. To view the
facets, use the following command:

draw surf <id range> facets

Feature Angle

The feature angle option is used to specify the angle at which surfaces will be split by a curve or where curves will be
split by a vertex. 180 degrees will generate a surface for every facet, while 0 degrees will define a single, unbroken
surface from the shell of the mesh. The default angle is 135 degrees. This feature is identical to the feature angle option
available when importing Exodus I files.

Smooth Curves and Surfaces

This option permits the use of a higher order approximation of the surface when remeshing/refining the resulting
geometry. Default is to use the original facets themselves as the curve and surface geometry representation. If the facet
model to be imported is to represent geometry with curved surfaces, it may be useful to apply this option. If the Spline
option is selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. More information on using
smooth approximation of the facets is available in Importing an Exodus 1l File.

Merge

This option allows the user to either merge or not merge the resulting surfaces. The default option is to merge adjacent
surfaces. This results in non-manifold topology, where neighboring surfaces share common curves. The no_merge
option, adjacent surfaces will generate distinct/separate curves.

Make elements

This option creates mesh elements from each of the facets on the facet surface.

334

CUBIT 11.0 User Documentation

Stitch

The stitch option is used with the facet or avs format files to try to merge vertices and triangles that are close. Figure 2
shows an example of where this might be employed. The model on the left contains facets that are not connected
between the red and blue groups. In this case, the surfaces will not be water-tight, even though the vertices on the
boundary between the two groups may be coincident. The stitch option attempts to eliminate the extra edge and vertex
between the groups to form the model on the right. This option can be useful when importing facet files for 3D meshing.
CUBIT's 3D meshing algorithms require a water-tight (closed) set of surfaces.

Figure 2. Example use of the stitch option on import.

Improve

The improve option will collapse short edges on the boundary of the triangulation that are less than 30% the length of the
average edge length in the model. In some cases, short edges are the result of discrete boolean operations on the
triangulation which may result in edges that are of negligible length. This option is particularly useful for boundaries where
multiple surfaces come together at an edge. Figure 3. shows an example of where the improve option improved the
quality of the triangles at the boundary. This option is especially useful if the facets themselves will be used for the FEA
mesh.

Triangles near a boundary that have not been The same set of triangles where improve
used the improve option option has collapsed edges

Figure 3. Example use of the improve option

Importing Granite Files

Granite files consist of granite models with the (*.g) file extension. Granite models may be imported directly into CUBIT
using the following command.

335

CUBIT 11.0 User Documentation

Import Granite '<granite_filename>'

When importing a granite file, the "set geometry engine granite" command will automatically be issued to set the
appropriate geometry kernel.

The Granite kernel can also import the following geometry types:

Pro/E part files (*.prt)

Pro/E assembly files (*.asm)

IGES files

STEP files

Granite files exported from cubit
Granite Neutral files (not tested yet)

Exporting Geometry

Geometry can be exported from CUBIT in a variety of formats, including the ACIS ".sat" and ".sab" formats as well as in
more portable exchange formats like STEP and IGES.

Exporting ACIS Files
Exporting STEP Files
Exporting IGES Files
Exporting Granite Files
Exporting Facet Files

Exporting ACIS Files

Geometry can be exported from within CUBIT to the ACIS "sat" (ASCII) and "sab" (binary) formats. These formats can be
used to exchange geometry between ACIS-compliant applications. The command used to export geometry is:

Export Acis [Debug] 'filename' [<geometry_entity list>] [binary|ascii] [current] [overwrite]

The filename should be enclosed in single or double quotes. By convention, binary and ASCII ACIS files use the .sab and
.sat filename extensions, respectively. If a geometry entity list is not specified, the entire ACIS model is exported. A
geometry entity list is specified in the same format used for other CUBIT commands (See Entity Specification). Note that
the model is saved as manifold geometry, and will have that representation when imported back into CUBIT (See Non-
Manifold Topology and Geometry Merging.)

When exporting, the filename extension will determine the default file type, either ASCII or binary. A .sat extension will
default to ASCII; a .sab extension will default to binary. If you use a different file extension you can specify the type with
the [binary|ascii] option (with an unsupported extension exporting will default to ASCII but importing requires the type to
be specified). Binary files can be significantly faster but are not guaranteed to be upward compatible nor cross-platform
compatible (although testing has determined compatibility between NT and HP/UX).

In the GUI version, the current option will set the default filename for autosave (cntrl-S or File->Save (auto inc)) to the
imported filename. Also, the filename is then set in the window titlebar.

When exporting with the "file overwrite" option on, the software will check to see if the file exists already, and if it does,
exporting will fail in the command line version or ask to confirm the overwrite in the GUI version of CUBIT. The overwrite
option will override this option and overwrite the file. The "file overwrite" option defaults to ON in the GUI version, OFF in
the command line version.

When exporting, you can set the version of the Acis geometry. This allows backwards compatibility to previous versions of
Cubit or other Acis-based applications. The command to change the Acis geometry engine version is:

Set Geometry Version [version_number]
where version_number can be one of the following:106, 107, 201, 300, 301, 401, 402, 403, 500, 501, 502, 503, 600,
601, 602, 603, 700, 701, 702, 703, 704, 705, 800, 1007, 1100, 1200, 1300, 1400, 1500, 1600, 1700. Note that you cannot

set a version number that is higher than that of your current engine. For example, Cubit 6.0 was based on Acis 6.2, so you
cannot set a geometry version of 700.

336

CUBIT 11.0 User Documentation

See also Importing ACIS Models.

Exporting STEP Files

CUBIT can export geometry to the STEP format, an emerging standard for storing geometry and other information. The
STEP AP203 and STEP AP214 standards are supported. It is recommended to use AP214 for exchange of geometry
information with CUBIT. The command used to export a STEP file is:

Export Step 'filename' [<geometry_entity _list>] [logfile ['filename'] [display]] [overwrite]
As with ACIS file export, you can specify which individual entities to export. If unspecified, all ACIS entities are exported.
The logfile option is used to save information regarding the conversion to STEP format. This information saved to a file
with the name specified by the user, or named 'step_export.log' by default. When running the GUI version of CUBIT, the
logfile can be displayed in a dialog window by using the display option.

The overwrite option works the same as with ACIS file export.

See Importing STEP Files for information on setting up the STEP import and export functionality.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

Exporting IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between ACIS and the IGES (Initial
Graphic Exchange Standard) format. The command to export IGES files is:

Export Iges 'filename' [<geometry_entity_list>] [logfile ['filename'] [display]] [overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all ACIS entities are exported.
The logfile option is used to save information regarding the conversion to IGES format. This information saved to a file
with the name specified by the user, or named ‘iges_export.log' by default. When running the GUI version of CUBIT, the
logfile can be displayed in a dialog window by using the display option.

The overwrite option works the same as with ACIS file export.

See Importing IGES Files for information on setting up the IGES import and export functionality.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

Exporting Granite Files

Granite files may be exported from CUBIT using the following command:

Export Granite '<granite_filename>' [Body <id_list>] [Volume <id_list>] [Surface <id_list>] [Curve <id_list>]
[Vertex <id_list>]

The following formats can also be exported from Granite formats.

IGES files

STEP files

ACIS SAT files. Note: The ACIS kernel cannot export Granite files.

Granite files. Note: These files can only be read into CUBIT. Pro/E cannot read these files.

Exporting Facet Files

Facet files may be exported directly, or by converting from an ACIS or Granite representation. The syntax for exporting
facet files is:

337

CUBIT 11.0 User Documentation

Export Facets 'filename' <entity_list> [overwrite]

The overwrite function allows you to overwrite an existing facet file.
Importing a Mesh

Importing a Free Mesh
Importing 2D Exodus |l Files
Importing Exodus Il Files
Importing Patran Files
Importing I-DEAS Files
Importing Abagus Files

Exodusll finite element data files can be imported into CUBIT. Several options for importing the mesh are available,
(including mesh transformations):

Importing a free mesh without geometry.

Importing a free mesh and associating the mesh with ACIS-based geometry currently residing in CUBIT.
Importing a 2D mesh and constructing ACIS-based Geometry

Importing a mesh and constructing Mesh-Based Geometry from dihedral angles and boundary conditions.

The first two options listed above are described in detail in Importing a Free Mesh. The third option, discussed in
Importing 2D Exodus Il Files, is a limited capability for constructing ACIS geometry from a 2D mesh. The fourth option of
creating Mesh-Based Geometry [Owen,2001] from the nodes, elements and boundary conditions of a finite element mesh
is described in Importing an Exodus I File.

Importing 2D Exodus Files

CUBIT has a limited capability to create ACIS Geometry from 2D Exodusl! finite element mesh files. (For a more general
capability, see the Import Mesh Geometry command, which will create Mesh-Based Geometry).

To import a 2D Exodus Il file and create ACIS geometry, the following command can be used:
Import Free Mesh '<filename>' {Time <t> | Step <step#> | Last}

CUBIT can create ACIS geometry from 2D Exodus Il data files (4, 8, or 9 node QUAD or SHELL element types) that do
not have enclosed voids (holes surrounded by mesh) and which were originally generated with CUBIT and exported to
Exodusl! with the Nodeset Associativity option set to on. The Nodeset Associativity command records the topology of the
geometry into special nodesets which allow CUBIT to reconstruct a new solid model from the mesh even after it has been
deformed. The new solid model of the deformed geometry can be remeshed with standard techniques or meshed with a
sizing function that can also be imported into CUBIT from the same Exodusl! file. CUBIT's implementation of the paving
and triadvance algorithms can generate a mesh following a sizing function to capture a gradient of any variable (element
or nodal) present in the ExoduslI file.

In order for this feature to be effective, the following commands must be issued when the mesh is exported and later
imported:

nodeset associativity on
set associativity complete on

The first command ensures that the geometry will be correctly recovered from the mesh, while the second ensures that
boundary condition and material IDs will be recovered.

338

CUBIT 11.0 User Documentation

Importing Exodus Il Files

Mesh-Based Geometry

CUBIT's mesh generation tools require an underlying geometry representation. In most cases, the ACIS solid modeling
engine, compiled with CUBIT, is used to represent the geometry. However, in some cases, an ACIS representation is not
available, and a previously developed finite element mesh is the only available representation of the model. In order to
utilize CUBIT's mesh generation tools, the import mesh geometry command provides an option for creating geometry
directly from the finite element mesh.

The import mesh geometry command will create a new volume for every block defined in the Exodus Il file. It will also
create curves, surfaces and vertices at appropriate locations on the model based on dihedral angles (also called feature
angles) and assigned nodesets and/or sidesets. The mesh used to construct the geometry will be owned by the new
geometric entities. This means that the mesh can be deleted, remeshed, or smoothed using any of CUBIT's meshing tools
by simply using the new geometry definition. CUBIT will assign appropriate intervals to the new curves as well as
determine an acceptable meshing scheme for surfaces and volumes.

The command to import a finite element mesh from an Exodusl| format file and generate geometry from the mesh is:

Import Mesh Geometry '<exodusll_filename>'

[Block <id range>|ALL]

Start_id <id>

[Use [NODESET|no _nodeset]

[SIDESET|no_sideset] [Feature Angle <angle>] [LINEAR|Gradient|Quadratic|Spline]
[Deformed {Time <time>|Step <step>|Last} [Scale <value>]]

[MERGE|No Merge]

[export_facets <1/2|3>]

[merge nodes <tolerance>]

File Name

Type the name of file to import in single quotation marks. The file must reside in the current directory. For information on
changing the current directory, see CUBIT environment commands . To list all the files in the current directory, type Is at
the command prompt.

Blocks

Use this option to select the specific blocks to be imported from the Exodus Il file. If no blocks are entered, then all blocks
will be read and imported from the file. Standard ID parsing can also be used in this argument to select a range of blocks.
For example "1 to 5" or "1, 5 to 10 except 6".

Each unique block selected to be imported will define a new body in the geometric model. Figure 1 shows a simple
example of the geometry generated from the 3D finite element mesh.

339

CUBIT 11.0 User Documentation

Figure 1. Example of mesh based geometry (right) created from a finite element mesh (left)

Blocks may be composed of 1D, 2D or 3D elements. For blocks composed of 2D elements (i.e. QUAD4, SHELL etc.), a
sheet body will be created. One dimensional elements (i.e.. BEAM, TRUSS, etc.) will define curves. Where a block may
be composed of more than one disconnected sets of elements, one body will be created for each continuous region of
elements assigned to the same block. Where possible, the ID of the new body will be the same as the block ID. Since IDs
must be unique, if a body ID is already in use, the next available 1D will automatically assigned by the program.

Start ID

Use this option to specify an alternate ID value for imported entities. The specified value will be used as the starting ID for
BOTH nodes and mesh elements. The new IDs will be assigned consecutively from the starting value. If the new ID
values for any of the imported entities would conflict with existing IDs, the command does not abort but moves the starting
ID for all element types to the same useable starting ID value.

Nodesets/Sidesets

Use the nodeset and sideset options to use any nodeset and sideset information in the Exodus I file in constructing
geometry. Recall that nodesets and sidesets are generic boundary condition data assigned to nodes, edges or faces of
the finite elements. It is useful to group mesh entities belonging to unique boundary conditions into geometric entities. This
permits the user to remesh a patrticular region of the model without having to reassign boundary conditions.

If the nodeset and sideset arguments are given, geometric entities will be generated for each unique set of nodes, edges
or element faces assigned to a nodeset or sideset. The default is to use any nodeset and sideset information available in
the file. Figure 2 shows an example of how nodeset and sideset information might be used to generate geometry.

340

CUBIT 11.0 User Documentation

Figure 2. Example of geometry created from mesh entities assigned to nodesets (3) and sidesets (1 and 2).

Upon import, nodesets and sidesets are automatically created with the appropriate geometric entities assigned to them.
The IDs of the new geometric entities, if generated from boundary condition data, will be the same as the nodeset and
sideset IDs. Where doing so would conflict with existing geometric IDs, the program will automatically select the next
available ID.

Feature Angle

Use this option to specify the angle at which surfaces will be split by a curve or where curves will be split by a vertex. 180
degrees will generate a surface for every element face, while 0 degrees will define a single, unbroken surface from the
shell of the mesh. The default angle is 135 degrees.

s

s

Figure 3. Example use of Feature Angle

Figure 3 shows an example of the use of different feature angles. On the left is a simple two-element hex mesh.
Specifying a feature angle greater than 120 degrees would create the geometry in the center image. Using a feature angle
less than 120 degrees and greater than 90 degrees would define the geometry on the right.

Smooth Curves and Surfaces

This argument allows the option of using a higher-order approximation of the surface when remeshing/refining the
resulting geometry. Default is to use the original mesh faces themselves as the curve and surface geometry
representation. If the finite element model to be imported is to represent geometry with curved surfaces, it may be useful
to select this option. If selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. Figure 4 shows
the effect of the smooth curve and surface option.

341

CUBIT 11.0 User Documentation

Figure 4. Effect of Smooth Curve and Surface Option for remeshing of mesh-based geometry

In this figure the top image is the original finite element mesh imported into CUBIT. In this example both models have
been remeshed with the same element size. The difference is that the figure on the right uses the smooth curve and
surface option. While this option can improve the surface representation, it should be noted that memory requirements
and meshing times can sometimes be affected.

If importing the Exodus |l file using the command line, other options for surface representations are also available.
[LINEAR|Gradient|Quadratic|Spline]

The method used from the GUI is either Linear or Spline. The Gradient and Quadratic methods are still somewhat
experimental and may not be as general purpose as the Spline representation.

Apply Deformations

This option permits the user to import time-dependant deformation information from the Exodus file. For this option, any
vector data in the Exodus Il file is assumed to be deformation information. If selected, deformations will be applied to the
nodes upon import. Enter a specific time step value, integer step, or the last time available in the file. If time-dependant
data is available in the Exodus Il file, selecting the down arrow in the edit field will display the available time steps in the
file. Default time is the last time step.

Figure 5. Example of remeshing of a deformed finite element mesh

Figure 5 shows an example of using Mesh-Based Geometry for a large deformation analysis. In this case, the analysis
Attaway et. al.,98] began and continued until mesh quality became unacceptable. At that point, the mesh was imported
into CUBIT and geometry re-created from the computed deformations. The finite element mesh could then be removed,
remeshed or improved and written back to an Exodus |l file. After remapping [Wellman,99] the appropriate analysis
variables back to the mesh, the analysis could then be restarted. This process was repeated multiple times until the
desired results were achieved.

Note: Care should be taken when using large deformations, as inverted elements (negative Jacobians) may produce
unpredictable results with the resulting geometric representation.

Also available is an optional scale factor. This applies the indicated scale to all deformations. Default is 1.0.

Merge

This option allows the user to either merge or not merge the resulting volumes. The default option is to merge adjacent
volumes. This results in non-manifold topology, where neighboring volumes share common surfaces. Using the no_merge
option, adjacent volumes will generate distinct/separate surfaces.

Merge Nodes

The merge_nodes option will allow the user to specify a different tolerance for merging nodes on import. The default
value is le-6.

Note: Care should be taken when setting import merge tolerances. Setting a tolerance too low will not merge adjacent
nodes. Setting the tolerance too high can produce undesirable results, and severely tangle the mesh.

342

CUBIT 11.0 User Documentation

Export Facets

[export_facets <1|2|3>]
This is primarily a debug option available only from the command line. This option will export the shell of the Exodus mesh
to an ASCII file in the form of facets. The resulting file can be imported to Cubit using the "Import Facets" command.

Export options: 1 = export only the exterior facets to file "facets.shell"; 2 = export only the interior facets between element
blocks to file "facets.inter"; 3 = export all boundary facets to file "facets.all".

Importing Patran Files

The command to import a mesh from an Patran format file is:
Import Patran '<neutral_filename>'

Import Patran Mesh Geometry '<neutral_filename>' [Use [Feature_Angle <angle>]
[Linear|Gradient|Quadratic|Spline]]

See Importing Exodus 1l Files for a description of the import options.

For more information on the Patran file format, see their website at www.mscsoftware.com.

Importing I-DEAS Files

The command to import a mesh from an I-DEAS format file is:

Import Ideas '<universal_filename>"'

Import Ideas Mesh Geometry '<universal_filename>' [Use [Feature_Angle <angle>]
[Linear|Gradient|Quadratic|Spline]]

See Importing Exodus |l Files for a description of the import options.

To see more information on the I-DEAS file format, visit their website at www.ugs.com.
Related Commands

Set Ideas Import Groups [ON]|Off]

Importing Abaqus Files

The command to import a mesh from an Abaqus format file is:
Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle <angle>]

Including the keyword mesh geometry will instruct CUBIT to create mesh-based geometry. This will provide the user with
the ability to remesh geometric entities. If the user does not import with the Mesh Geometry flag, he will have to tell CUBIT
to draw the mesh after the import is done in order to view it. The Feature Angle is used when building the surface topology
to determine when to split a surface into two surfaces. If the angle between two neighboring element normals is less than
Feature Angle, then the two elements will be placed on separate surfaces. If the keyword Feature Angle is not supplied,
the default 135 degrees is used. For a description of importing mesh geometry see Importing Exodus Il Files. The
keyword apply_bc can be included to import the boundary conditions as well.

It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for complex models. If this
occurs, import the mesh without the Mesh Geometry flag, and draw the mesh to view it.
See http://www.simulia.com/ for more information on the ABAQUS file format.

Importing a Free Mesh

The command to import a mesh from an Exodus Il format file is:

343

CUBIT 11.0 User Documentation

Import Mesh '<exodusll_filename>' [Block <block_ids>] [Unique Genesis IDs] [Shell]
[{Group|Body|Volume|Surface|Curve|Vertex} <id_range> | Preview]

This command permits the user to import a mesh for visualization purpose or to import the mesh onto an existing
geometry. CUBIT also has the capability to generate geometry directly from the nodes and elements of a finite element
mesh. See also Importing Exodus Il Files in this section of this manual.

Related Commands:

Import Mesh Geometry (options)

Import Free Mesh (2D)

Delete Mesh Preview

Export [Genesis | Mesh] '<filename>'

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

[set] Import Mesh NodeSet Associativity [ON|off]
[set] [Export Mesh] NodeSet Associativity [on|OFF]

Transforming Mesh Coordinates

set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

The user can import a mesh from an Exodus Il file and associate the mesh with matching geometry. The resulting mesh
may then be manipulated normally. For example, the mesh may be smoothed or portions of it deleted and remeshed. The
user can save their work by exporting the geometry and mesh, and then restore the geometry and mesh later. In some
cases, saving and restoring can be faster or more reliable than replaying journal files.

Saving and importing a mesh may be useful for teams working on creating a conforming mesh of a large assembly so that
they can pass information to one another. For example, a team member can export the mesh on the surfaces between
two parts, and another team member import the mesh for use on an adjoining part of the assembly.

As of cubit version 7.0, any higher order elements, block definitions, nodesets, and sidesets are retained on import.

Importing a Mesh with Nodeset Associativity

Meshes can be imported into CUBIT that contain nodeset associativity data used for defining finite element boundary
conditions. If an exported CUBIT mesh is going to be imported back onto the same geometry, then before exporting the
user should issue the following command:

set export mesh nodeset associativity on
This causes extra nodeset data to be written, which associates every node to a geometric entity, resulting in an import
which is more reliable. When importing, if the user does not want to use the nodeset associativity data that exists in a file,
then before importing the following command should be used:

set import mesh nodeset associativity off

The user may wish to turn geometry associativity off if, for example, the geometry is no longer identical as a result of
curves being composited, or CUBIT names changed due to a ACIS version changes.

Importing a Mesh onto Modified Geometry

Although there are some exceptions, CUBIT requires that the mesh be imported onto the same geometry from which it
was exported.

Since merge information is not stored with the ACIS representation, care should be taken that the geometry is merged the

same way on export and import of the mesh. If not, importing the mesh one block at a time in successive commands may
increase the chance of a successful import, at the cost of more memory and time.

344

CUBIT 11.0 User Documentation

Between exporting and importing a mesh, the geometry may be modified slightly by compositing entities. Mesh import will,
however not be successful if entities are partitioned or a body is webcut. In some cases mesh import may be successful
on modified geometry if the new vertices match up exactly with nodes of the mesh, and the new curves match up exactly
with edge chains of the mesh. Unless this criteria is met, associating the mesh with the geometry will be unsuccessful.

Mesh Import Tolerance

To change the tolerance with which imported mesh must line up with geometry issue the command:

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Importing a Mesh without Geometry Associativity

A mesh may be imported without associating the nodes and elements to geometry by using the Preview option. This may
be useful, if importing the mesh is unsuccessful with the current geometry representation. In most cases this option is
used only to preview the mesh in order to determine where geometry associatively problems may exist. Support for
meshes without geometry associativity is limited to List, Draw and view navigation commands.

When a mesh is imported with the Preview option, the imported mesh entities are placed in a group called
free_elements. To see if the elements match the geometry, the user may issue the following command:

draw free_elements add
To delete the unassociated mesh elements, use the following command:

delete mesh preview

Specifying a Portion of the Mesh to be Imported

The Block option in the Import Mesh command indicates that only the specified element block should be imported from
the Exodus Il file. In the same manner, the Volume and other geometry options provide a way to import the nodes and
element on the indicated geometry. If neither a block nor a geometry entity is specified, then the entire mesh file is read.

If a block is specified without specifying a geometry entity, associativity or proximity is used to determine which volume
the block elements should be associated with. If a block and a volume are specified, the block elements are associated
with the specified volume, provided they actually match. If a volume is specified without a block, associativity data is
used to find a block corresponding to the given volume.

Unique Genesis IDs and Shell Options

The Unique Genesis IDs option is used to preserve ids in the genesis file in the case that id overlap exists when importing
into CUBIT. This can occur when importing into an active session where CUBIT ids have already been assigned.

The Shell Option is used as a flag to alert the program that there are shell elements in the file. Shell elements can not
always be detected by the import program, and this ensures that the shell elements will be included in the model.

Exporting the Finite Element Model

CUBIT currently supports the Exodus file format for exporting the finite element model.

Exporting an Exodus |l File
Exporting an ABAQUS File
Exporting an LS-DYNA File
Exporting a Patran Neutral File
Exporting Fluent Grid Files

Other Formats

Cubit also has limited export capabilities for Nastran and ldeas mesh files.

345

CUBIT 11.0 User Documentation

Export Ideas '<filename>' [Node <id_list> Hex <id_list> Tet <id_list> Face <id_list>] Tri
<id_list>] [overwrite]

Export Nastran '<filename>' [overwrite]

Note that only the mesh information will be exported. CUBIT doesn't support boundary conditions exported from Cubit in
these formats.

Custom translators are available to translate between the Exodus Il format and a limited number of other analysis code
formats. Contact the cubit development team for a current list of supported translator formats.

Exporting an Exodus Il File

After defining the element blocks, nodesets and sidesets for a model, the model can be written to the Exodus Il file using
the command:

Export [Genesis|Mesh] '<filename>' [dimension {2|3}] [Block <id_list>] [XML '<filename>']

The Genesis or Mesh arguments are optional and both indicate that an Exodus Il format will be written. The filename can
be any valid filename. Where a full path is not specified, the file will be written in the current working directory.

The dimension argument is also optional. Most element types have an inherent dimensionality associated with them. For
example, a truss or beam element is inherently 2D while a hex or tetra element is 3D. Without this argument, only the x-y

location of the nodal coordinates of 2D elements are written to the Exodus I file. Using the argument dimension 3, in this

example, permits the full 3D coordinates to be written.

The optional Block argument may also be added to the Export command. Without this argument, all blocks defined in the
current model will be exported to the Exodus Il file. This argument permits the user to specify only a portion of the blocks
in the model. The <id_list> may be any valid set of integers corresponding to the Blocks in the current model.

The XML optional argument may also be added to the Export command. When this argument is included and assembly
data exists in the model, an XML file is written which describes the relationship between block IDs in the Exodus Il file and
parts in the assembly. See the Parts, Assemblies and Metadata section for details.

Controlling Element and Node ID Maps
Set IDMaps {On|Off}

The Set IDMaps command controls whether the element ID map and node ID map are written to the Exodus Il file. Most
analysis and post-processing applications consider these maps to be optional, and many ignore the maps even if they are
present. By default, IDMaps are off. Note that this setting only affects Exodus Il output; it has no affect when writing other
mesh file formats. Also note that this setting does not affect whether the element order map is written to the Exodus Il file.
The element order map is always included. See the Exodus manual for more information on element and node ID maps.

Exporting a Parallel Mesh for pCAMAL

export parallel "<filename>" [block <id_list>] [overwrite] [processor <number>]

The export parallel command is used to output an Exodusl! file with the boundary mesh or shell for sweepable volumes
that were meshed with set parallel meshing enabled. The options are the same as those for the "export genesis"
command except for the addition of the processor option.

The processor option allows the user to specify the number of processors that will be used to mesh the volume with the
pCAMAL option. This same option exists in the pPCAMAL application and is more often used there since the number of
available processors is known then rather than when the output file is created in Cubit.

If the processor option is given, Cubit attempts to balance the number of sweepable volumes to run on n processors by
converting many-to-one sweeps to one-to-one sweeps, subdividing the sweep volume along its sweep direction, or
partitioning the source surface of a one-to-one sweep if the number of source quads is much larger than the number of
layers.

346

CUBIT 11.0 User Documentation

Converting an Exodus Il file to ASCII

The Exodus ll file format is binary. It is frequently necessary to view the contents of the Exodus Il file as plain text. A
publicly available tool known as ncdump can be used to view the contents of an Exodus Il file. ncdump is part of the
netCDF library and is currently available from Unidata at the following URL:

http://www.unidata.ucar.edu/

On a UNIX platform, typical use of the ncdump utility is:
ncdump filename.e > filename.txt

In this format, the ncdump utility will take the Exodus |l file, filename.e, and dump the contents to an ASCI| file
filename.txt

Another option for converting between binary and ASCII formats of Exodus Il files is a utility known as exotxt. Exotxt is
part of the SEACAS tool suite. Contact the Sandia CUBIT development team for a copy of this utility.

Note that the 'stock' ncdump utility should work for most meshes; however, Sandia increases some of the dimensions in
order to handle larger meshes (more element blocks, boundary conditions, variables). The dimensions we increase in
netcdf.h are:

NC_MAX_DIMS (max dimensions per file) from 100 to 65536
NC_MAX_VARS (max variables per file) from 2000 to 524288

Exporting ABAQUS Files

To export a mesh to an ABAQUS file, issue the command:
Export Abaqus '<filename>' [Block <id_list>]
The command is nearly identical to the stand-alone utility, exoaba.

The ABAQUS export command only supports a subset of CUBIT's element types. The supported element types and their
ABAQUS equivalents are listed in the table below.

CUBIT Element Type Abaqus Element Type
HEX, HEX8 C3D8R
HEX20 C3D20R
QUAD, QUAD4 CPE4R
SHELL, SHELL4 S4R
TETRA, TETRA4 C3D4
TETRA10 C3D10
TRI, TRI3 CPS3
TRISHELL, TRISHELL3 STRI3
BAR, BAR2 B21
BAR3 B22

347

CUBIT 11.0 User Documentation

TRUSS, TRUSS2 T3D2
TRUSS3 T3D2
BEAM, BEAM2 B31
BEAM3 B32
SPRING SPRINGA

As with exodus and exoaba, blocks, nodesets, and sidesets are exported as generic boundary conditions, not as specific
types of boundary conditions such as a point load.

Exporting LS-DYNA Files

To export a mesh to an LS-Dyna file, issue the command

Export LSDyna '<filename>' [Block <id_list>]
The LSDyna export command only supports a subset of CUBIT's element types, namely HEX, HEX8, TETRA, TETRA4,
QUAD, QUAD4, SHELL, SHELL4, TRI, TRI3, TRISHELL, TRISHELL3, BAR, BAR2, TRUSS, TRUSS2, BEAM, BEAM2,
and SPRING.

In this release only nodes and elements are exported. No sideset, nodeset, or block information is exported.

Exporting Patran Neutral Files

To export a mesh to a Patran neutral file, issue the command:
Export Patran '<filename>' [Block <id_list>]

The Patran export command only supports a subset of CUBIT's element types, namely HEX, HEX8, HEX20,
QUAD,QUAD4, SHELL, SHELL4, TETRA, TETRA4, TETRA10, TRI, TRI3, TRI6, BAR, and BAR2.

Blocks are written as plain element connectivity. Nodesets are exported as entity groups containing the appropriate
nodes. Sidesets are only supported on surfaces (sides of hex or tet elements), and are exported as pressure loads with a
constant pressure of 1.0.

If a block, nodeset, or sideset is given a name in CUBIT, its name is included in the neutral file, truncated to 12 characters
to conform with the Patran neutral file format. Block attributes and boundary condition distribution factors are not exported
to the neutral file.

Exporting Fluent Grid Files

Exporting Fluent Grid Files Geometry can be exported from Cubit to the Fluent .msh format. This format can be used to
exchange grid information between .msh compatible programs including Fluent, GAMBIT, and TGrid. The command used
to export the mesh geometry is:

Export Fluent '<filename>' [Surface <id_list> | Volume <id_list>] [overwrite]

The filename should be enclosed in either single or double quotes. By convention, the file extension .msh is applied to
grid files. The extension should be included in the filename section. Other file extensions such as .cas may be used, but
they cannot be guaranteed to be compatible with either GAMBIT or TGrid.

In order to guarantee that the grid file will be compatible with Fluent, all bodies must be merged (See Geometry Merging).
Boundary condition zones are created in two different ways. The first way involves user-defined mesh groups consisting
only of quads (3D), triangles (3D), or element edges (2D) (See Geometry Groups). Zones maintain group names as
defined at the time of export. The second way involves sidesets. In this situation, the same rules as mesh groups apply. If
a sideset is unnamed, it will be labeled with the zone number as assigned by Fluent. Groups or sidesets of mixed type
(e.g. hexes and faces) will not be exported. All boundary conditions are automatically set to type ‘wall’ and must be
customized within either Fluent or GAMBIT.

348

CUBIT 11.0 User Documentation

Cell zones are automatically created for 3D meshes containing blocks. Blocks must contain entire and continuous
volumes in order to create a valid grid. In 2D models, the cell zones are created from sidesets containing only quads or
tris. In order to create a valid grid, these sidesets must contain whole, continuous surfaces. All cell zones are default set to
type ‘fluid.’

If no entities are specified, the entire model is exported. In order to export selected entities, the types ‘volume’ and
‘surface’ can be specified. In 2D cases, use ‘surface’ while in the 3D case use ‘volume.’

The exporter can handle higher-order elements, although Fluent will convert the elements to first-order upon import.

When exporting, Cubit will check to see if the file exists already, and if it does, exporting will fail. The overwrite option will
override this option and overwrite the file.

349

CUBIT 11.0 User Documentation

Finite Element Model

Finite Element Model Definition
Element Block Specification
Nodesets and Sidesets
Cohesive Elements

Exodus Il Model Title
Transforming Mesh Coordinates
Exodus Coordinate Frames
Exodus Il File Specification

This chapter describes the techniques used to complete the definition of the finite element model. The definitions of the
basic items in an Exodus database are briefly presented, followed by a description of the commands a user would
typically enter to produce a customized finite element problem description. Commands for exporting the finite element
model are given in the Importing and Exporting Files chapter.

Finite Element Model Definitions

Sandia's finite element analysis codes have been written to transfer mesh definition data in the Exodusl! file format
(citation Schoof, 95). The Exodusll database exported during a CUBIT session is sometimes referred to as a Genesis
database file; this term is used to refer to a subset of an Exodus file containing the problem definition only, i.e., no
analysis results are included in the database.

The Exodusll database contains mechanisms for grouping elements into Element Blocks, which are used to define
material types of elements. Exodusll also allows the definition of groups of nodes and element sides in Nodesets and
Sidesets, respectively; these are useful for defining boundary and initial conditions. Using Element Blocks, Nodesets and
Sidesets allows the grouping of elements, nodes and sides for use in defining boundary conditions, without storing
analysis code-specific boundary condition types. This allows CUBIT to generate meshes for many different types of finite
element codes.

Element Blocks

Element Blocks (also referred to as simply, Blocks) are a logical grouping of elements all having the same basic geometry
and number of nodes. All elements within an Element Block are required to have the same element type. Access to an
Element Block is accomplished through a user-specified integer Block ID. Typically, Element Blocks are used by analysis
codes to associate material properties and/or body forces with a group of elements.

Nodesets

Nodesets are a logical grouping of nodes accessed through a user-specified Nodeset ID. Nodesets provide a means to
reference a group of nodes with a single ID. They are typically used to specify load or boundary conditions on portions of
the CUBIT model or to identify a group of nodes for a special output request in the finite element analysis code.

Sidesets

Sidesets are another mechanism by which constraints may be applied to the model. Sidesets represent a grouping of
element sides and are also referenced using an integer Sideset ID. They are typically used in situations where a
constraint must be associated with element sides to satisfactorily represent the physics (for example, a contact surface or
a pressure.

Element Types

The basic elements used to discretize geometry were described in the mesh generation chapter. Within each basic
element type, several specific element types are available. These specific element types vary by the number of nodes
used to define the element, and result in different orders of accuracy of the element. The element types available for each
basic element type defined in CUBIT are summarized in the following table. For a description of the node and side
numbering conventions for each specific element type, see the Appendix. Element types can be set for individual Element
Blocks, either before or after meshing has been performed. Higher-order nodes are created only when the mesh is being
exported to the Exodus Il file, and persist in the CUBIT database after file export.

350

CUBIT 11.0 User Documentation

Table 1. Element Types Defined in CUBIT

Basic Element .
Type Specific Element Type Notes

Edge BAR, BEAM Bars have 2 DOF's per node, Beams 3

TRI, TRI3, TRI6, TRI7,
Triangle TRISHELL, TRISHELLS3, Tri element nodal coordinates are always 3D.
TRISHELLS6, TRISHELL7

QUAD, QUAD4, QUADS, Quad element nodal coordinates are 2D, that is their
Quadrilateral QUADY9; SHELL, SHELL4, nodes contain only x and y coordinates. Shell
SHELLS, SHELL9 element nodal coordinates are 3D.
Tetrahedron TETRA, TETRA4, TETRAS, TETRABS contains vertex nodes and mid-face nodes,
TETRA10 experimental element used in Sandia FEA research

Hexahedron HEX, HEX8, HEX20, HEX27

Element Block Specification

Creating Blocks

Assigning a Name or Description to an Element Block
Defining the Element Type

Default Element Blocks

Assigning Attributes

Displaying Blocks

Deleting Blocks
Automatically Assigning Mesh Edges to a Block (Rebar)

Creating Beam Blocks (Spider)
2d Elements

Element blocks are the method CUBIT uses to group related sets of elements into a single entity. Each element in an
element block must have the same basic and specific element type.

The preferred method for defining blocks is to use geometric entities such as volumes, surfaces or curves. Blocks can
also be defined using mesh entities. If a block is defined at a geometric entity, each of the elements owned by the
geometry are automatically assigned to the block. Deleting or remeshing the geometry automatically changes the set of
elements grouped into the block. If mesh entities are used to specify a block, deleting the mesh will also delete the
elements from the block.

Some important notes regarding Element Blocks are as follows:
Multiple volumes, surfaces, and curves can be contained in a single element block

A volume, surface, or curve can only be in one element block

e Element Block id's are arbitrary and user-defined. They do not need to be in any contiguous sequence of
integers.

e Element Blocks can be assigned a single floating point number, referred to as the block Attribute; this number is
used to represent the length or thickness of Bar and Shell elements, respectively.The attribute defaults to 1.0 if
not specified.

Creating Element Blocks

Element blocks are defined with the following Block commands.

Block <block_id> {Vertex | Curve | Surface | Volume} <range> [Remove]

351

CUBIT 11.0 User Documentation

Block <block_id> {Hex|Tet|Pyramid|Face|Tri|Edge|Node} <range> [Remove]
Block <block_id> Group <range> [Remove]

The first command defines the block based on a list of geometric entities, while the second uses specific lists of mesh
entities. Since a block can only contain a single element type, usually entities of the same type are defined on the same
block. The third option provides for assigning groups of entities to a single block. This is useful, for example, when
several entities of the same type can be grouped together. The Block Group command simplifies the specification of the
block.

By using the Remove argument to the block command, the specified geometry or mesh entity can be removed from the
block definition.

Assigning a Name or Description to an Element Block

The following commands can be used to assign a name or description to an element block. Assigning a hame to a block
can be more intuitive than using traditional integer IDs, and the name and description are preserved in DART metadata-
enabled applications (like SIMBA). This command is also available for nodesets and sidesets.

Block<ids> name "<new_name>"

Block<ids> description "<description>"

Defining the Element Type

Each block must have a specific element type associated with it. To assign an element type to a block, use the following
command:

Block <block_id_range> Element Type <type>

Available element types are defined by the Exodus Il file format specification (Schoof, 95). CUBIT supports the following
element types:

Nodes: SPHERE SPRING
Curves: BAR BAR2 BAR3 BEAM BEAM2 BEAM3 TRUSS TRUSS2 TRUSS3

Surfaces: QUAD QUAD4 QUAD5 QUAD8 QUADY SHELL SHELL4 SHELL8 SHELL9 HEXSHELL
TRITRI3 TRI6 TRI7 TRISHELL TRISHELL3 TRISHELL6 TRISHELL7

Volumes: HEX HEX8 HEX9 HEX20 HEX27 PYRAMID TETRA TETRA4 TETRA8 TETRA10
TETRA14

If the element type is not assigned for an element block, it will be assigned a default type depending on which type of
geometry entity is contained in the block. The default values used for element type are:

Volume: 8-node hexahedral elements (HEX8) will be generated for hex meshes. TETRA4 will be
generated for tet meshes.

Surface: 4-node shell elements (SHELL4) will be generated for quad meshes and TRISHELLS3 for tri
meshes.

Curve: 2-node bar elements (BAR2) will be generated.
Node: 1-node elements (SPHERE) will be generated.
Higher order nodes are moved to curved geometry by default. To change this, use the following command:
set Node Constraint [ON|off]
On means higher order nodes snap to curved geometry. Off means higher order nodes are placed at the average location

of the element nodes: for edges, this means on the line containing the edge; for 2d elements, this usually means on the
plane containing the element. Several examples of specifying various types of element blocks are given in the Appendix.

352

CUBIT 11.0 User Documentation

Default Element Blocks

When exporting an ExoduslI file, if the user has not specified any Element Blocks, by default element blocks will be
written for any meshed volumes. This default behavior can be changed, to write surface, volume, or no meshes by default.
This option can be set using the command

Set Default Block [ON|off|Volume|Surface]
Default behavior, ON, is for the blocks to automatically be written based on their owning geometry. When the OFF setting
is used, only the mesh contained in blocks created by the user will be exported. Mesh not in an element block at export
time, will not be exported. The export will still succeed and no error will be thrown. If Volume is specified, only elements
contained in volumes will have default blocks specified. Similarly, the Surface argument indicates that only surfaces
containing elements will use default blocks.
When default blocks are used, the IDs for the resulting blocks will be defined as follows based upon the type of geometry:

Volume: The default block ID will be set to the Volume ID

Surface: The block ID will be set to 0

Curve: The block ID will be set to

Assigning Attributes to Blocks

It may be necessary to associate attributes with a specific element block. Attributes are generally integer or floating point
values that represent some physical property in the region occupied by the block, such as material properties or shell
thickness. To assign an attribute to an element block, use the following command:

Block <block_id_range> Attribute <value>

The default number of attributes of an element block is dependent on the element type of the element block. Except for
the element blocks of the element types below, all element blocks contain zero attributes by default.

Element Type Number Default Attributes

SPHERE 1
BAR 1
BEAM 3
TRUSS 1
SPRING 1
SHELL 1
TRISHELL 1

To assign more attributes than the number of default attributes use the following command:
Block <id_range> Attribute Count <1-10>

CUBIT will store up to 10 attributes per block. Specify the maximum number of attributes to be stored on the block with
this command. Once this command has been executed, individual attributes may be set using the following command:

Block <id_range> Attribute Index <index> <value>

353

CUBIT 11.0 User Documentation

The index is an integer from 1 to the maximum count specified in the Block Attribute Count command. The value may be
any valid floating point number.

Displaying Element Blocks

Blocks can be viewed individually with CUBIT by employing the following command:
Draw Block <block_id_range> [Color <color_spec>] [add]
Block colors can also be changed using the following command:

Color Block <block_id_range> {color|Default}

Deleting Element Blocks

All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis

To remove only Blocks, the following may be used:
Reset Block

To remove a specific block, use:

Delete Block <block_id_range>

Automatically Assigning Mesh Edges to a Block (Rebar)

After a mesh has been defined within a volume, it may be useful to use the existing mesh edges as the basis for an
element block. Such an element block might be composed of bars or truss type elements that might propagate through a
solid medium such as rebar placed in reinforced concrete. Although the Block <id> Edge <range> command could be
used for this task, it would prove extremely tedious defining the individual edges to add to the block. To make this process
easier, the following command can be used:

Rebar Start <x> <y> <z> Direction <x> <y> <z> [Length <value>] Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam?2|beam3|truss|truss2|truss3}]

The Rebar command allows the user to specify a starting location for a set of edges and an initial direction. The program
will find the closest existing node in the mesh to Start <x> <y> <z> and begin propagating through the mesh in the
specified Direction <x> <y> <z>, adding edges to the block as it propagates through the mesh. The edge that is attached
to the last node and is within a fixed 30 degrees of the specified direction is added to the block. The Propagation of the
edges continues until either the optional Length value is reached or an edge does not meet the Direction criteria. Also
required with this command is a block ID. An Element Type can also be specified.

Similarly, you can use the following command which will use the 30 degree cone described above to gather edges from a
surface into a single block using the Cartesian x, y, and/or z vectors.

Rebar Surface <range> [x] [y] [z] Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}] [propagate]

Diagonal and Orthogonal Rebar Blocks

Another method for generating rebar blocks include the Diagonal/Orthogonal option. This command can only be used on
surfaces that have been meshed with the mapping scheme. This command will create a block of edges from the mapped
mesh by starting in one corner and gathering edges orthogonally, or creating new edges diagonally based on the option
specified, using the parametric coordinate system dictated by the mapping scheme on the surface. The spacing option
dictates how many edges are skipped over before starting the next set of rebar edges.

Rebar Surface <range> {Diagonal|Orthogonal} [Spacing <int>] [Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss]

354

CUBIT 11.0 User Documentation

CUBIT> rebar surf 1 diagonal spacing 2 block 2

CUBIT> rebar surf 1 orthogonal spacing 3 block 3

Specifying a set of nodes

A final rebar option allows the user to create or group rebar edges into a specified block using nodes. Edges are created,
or gathered, using the ordered list of nodes specified in the command.

Rebar Node <range> [Target Block <id>] [Element Type
{bar|bar2|bar3|BEAM|beam?2|beam3|truss]

355

CUBIT 11.0 User Documentation

CUBIT> rebar node 113 105 97 89 81 73 65 57 49 target block 1

A related command for creating curve geometry directly from mesh edges is the Create Curve from Mesh command. See
Curve creation for more details.

Creating Beam Blocks (Spider)

The block creation tool also allows the user to create a special block of bar elements that can be used as part of the
boundary specification. This command creates beam type elements directly without creating any underlying geometry.

The command for creating this type of block is:

Block <id> Joint Node <id> Spider {Surface|Face|Node} <range> [preview] [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The joint node is the starting location of the bar elements and the spider location is the terminating location of the bar
elements. You can specify the terminating location as either a node, geometric surface or the face of a mesh entity.
Some analysis codes refer to these bar elements as tied contacts or rigid bar elements. They can be used to tie models
together or to enforce specific kinds of boundary conditions. For example, in the figure below a block of beam elements is
used to tie a node at the center of the circle to every node on the edge of the circle. This arrangement can be used to
enforce circularity but still allow for displacement of the entire circle. This may occur if there are additional structures
above the cylinder that are being excluded from the current finite element model. The beam elements were created by a
series of commands of the form

block 10 joint node 1 spider node 2

The preview option can be included to draw the location of the beam blocks on the screen without actually executing the
command.

356

CUBIT 11.0 User Documentation

Figure 1. Beam elements created with the Spider command

2D Elements

CUBIT is a 3d mesh generator by default. Element types, by default, are respectively TRISHELL and SHELL for triangle
and quad elements. If a 2d mesh is desired, blocks types must be explicitly set to TRI or QUAD.

Example:

create brick x 10

surface 1 scheme trimesh
mesh surface 1

block 1 surface 1

block 1 element type tri
export mesh "mymesh.exo"

Sideset 1 will be based on the TRI and QUAD elements in blocks 1 and 2, with the side numbering referring to the edges
of the triangles and quads.

Nodeset and Sideset Specification

Creating Nodesets and Sidesets

Assigning Names and Descriptions to Nodesets and Sidesets
Grouping Faces on a Surface into a Sideset

Deleting Nodesets and Sidesets

Displaying Nodesets and Sidesets

Nodeset Associativity Data

Equation-Controlled Distribution Factors

357

CUBIT 11.0 User Documentation

Boundary conditions such as constraints and loads are applied to the finite element model using nodesets or sidesets,
also known as Genesis entities. Rather than attempting to maintain specific boundary condition information, such as load,
temperature, constraint, etc., Genesis entities are the generic vehicle for the user to set up boundary conditions on the
model. Nodes, elements and element faces are instead grouped together and assigned unique IDs. Node, element and
face IDs assigned to Genesis entities can then be written to the Exodus Il mesh file. Once imported to the intended
analysis application, the nodeset and sideset IDs can be appropriately interpreted as specific physical boundary
conditions.

The preferred method for creating Genesis entities is to assign vertices, curves, surfaces or volumes to a specific nodeset
or sideset ID. Any mesh entity owned by the geometric entity in a nodeset or sideset is automatically assigned to the
same nodeset or sideset. This allows greatest flexibility in generating and updating the finite element mesh. For example,
if a surface belongs to a specific sideset, remeshing the surface will automatically delete any old faces from the sideset
and add the faces of the new mesh.

In some cases, the geometric model does not provide enough resolution to define the desired boundary conditions. In this
case, the model may be partitioned using CUBIT's virtual geometry features. Where this may not be feasible, mesh
entities can also be added directly to the desired nodeset or sideset. Where individual mesh entities have been added to
nodesets or sidesets, deleting the mesh will also remove these elements from the Genesis entity. If the geometry is
remeshed, the new mesh entities must also be added once again to the nodesets or sidesets.

Nodesets can be created from groups of nodes categorized by their owning volumes, surfaces, curves or vertex.
Individual nodes may also be added to a nodeset. Nodes can belong to more than one nodeset.

Sidesets can be created from groups of element sides or faces categorized by their owning surfaces or curves or by their
individual face IDs. Element sides and faces can also belong to more than one sideset.

Creating Nodesets and Sidesets

Nodesets and Sidesets are created in CUBIT by assigning the appropriate geometry or mesh entities in the model to a
nodeset or sideset ID. The following commands can be used:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex | Node} <range> [Remove]
Sideset <sideset_id> Group <id_range> [remove]

Sideset <sideset_id> {Curve|Surface|Edge|Face|Tri} <id_range> Remove

Sideset <sideset_id> Edge <id_range> [wrt {{Tri|Face} <id_range> | all }]

Sideset <sideset_id> Face <id_range> [wrt {Hex <id_range> | all}]

Sideset <sideset_id> Tri <id_range> [wrt {Tet <id_range> | all}]

Sideset <sideset_id> Surface <id_range> [wrt {{Volume|Surface} <id_range> | all}]
[FORWARD|Reverse|Both]

Sideset <sideset_id> Curve <id_range> [wrt {Surface <id_range> | all}]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numbers. If there are no user-defined
Nodesets or Sidesets, none are written to the Exodus Il file.

With Sidesets, direction is often important. For surfaces, the direction may be specified using the Forward, Reverse, or
Both options. The Forward option will write a sideset in relation to hexes in the surface's forward volume, which is the
volume that the surface's normal points away from. The Reverse option will write a sideset in relation to hexes in the
surface's reverse volume, which is the volume that the surface's normal points into. The Both option will allow sidesets to
be written in relation to the hexes that lie in volumes on both sides of the surface. The default is Forward. The user can
additionally specify the volume from which the hexes should be taken in relation to by using the wrt Volume option.

Direction is equally important for curves in Sidesets. The wrt Surface option allows the user to indicate which surface's
faces will be included in the Sideset. The wrt All option will include all faces attached to the curve. The default is wrt All.

Assigning Names and Descriptions to Nodesets and Sidesets

Nodesets and sidesets can be assigned names and descriptions. Using names and descriptions is often more intuitive
than using traditional integer IDs. When exporting a mesh as a DART artifact, names and descriptions are included in the
metadata, making them available to DART metadata-enabled applications such as SIMBA. To give a name or description
to nodeset or sideset, use one of the following commands:

358

CUBIT 11.0 User Documentation

{Nodeset|Sideset} <ids> name "<new_name>"
{Nodeset|Sideset} <ids> description "<description>"

This command can also be used to define names and descriptions for Element Blocks.

Grouping Faces on a Surface into a Sideset

A sideset can be created by grouping a portion of the faces on a given surface by using the following command.

SideSet <sideset_id> Surface <surf_id> Patch { Maximum <x> <y> <z> Minimum <x> <y> <z> |
Center <x> <y> <z> outer_radius <value> [inner_radius <value>]} [partition]

This command places only the faces meeting the specified criteria into the sideset. Specifying the Maximum and
Minimum locations of a bounding box will place all faces on the surface whose centroid fall within the box defined by the
Maximum and Minimum vectors. Using the Center and outer_radius option will place into the sideset, all faces on the
surface whose centroids fall within the circle defined by Center and outer_radius. An optional inner_radius may also be
specified, where faces within the annulus defined by the inner_radius and outer_radius are placed in the sideset. The
partition option will split the surface based on the sideset definitions, creating new surfaces.

Important: Unlike the other Sideset commands that use geometric entities, this command does not assign the geometric

surface to the sideset. Instead only the mesh entity faces are added. If the mesh is deleted, the sideset will become
invalid.

Deleting Nodesets and Sidesets

All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:
Reset Genesis
To remove only nodesets or sidesets, the following may be used:
Reset Nodeset
Reset Sideset
To remove a specific nodeset or sideset, use:
Delete Nodeset <nodeset_id_range>

Delete Sideset <sideset_id_range>

Displaying Nodesets and Sidesets

Nodesets and Sidesets can be viewed individually through CUBIT by employing the following commands:
Draw NodeSet <nodeset_id_range> [Color <color_spec>] [add]
Draw SideSet <sideset_id_range> [Color <color_spec>] [add]

Nodeset and Sideset colors can also be changed using the following commands:
Color NodeSet <nodeset_id_range> {color|Default}

Color SideSet <sideset_id_range> {color|Default}

Nodeset Associativity Data

Nodesets can be used to store geometry associativity data in the Exodus Il file. This data can be used to associate the
corresponding mesh to an existing geometry in a subsequent CUBIT session. This functionality can be used either to
associate a previously-generated mesh with a geometry (See Importing an Exodus Il File), or to associate a field function
with a geometry for adaptive surface meshing (See Adaptive Meshing).

The commands to control and list whether associativity data is written or read from an Exodus I files are the following:

359

CUBIT 11.0 User Documentation

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

set Import Mesh NodeSet Associativity [ON]|off]

[set] [Export Mesh] NodeSet Associativity [on|OFF]

[set] [Export Mesh] NodeSet Associativity Complete [On|OFF]
Associativity data is stored in the Exodus Il file in two locations. First, a nodeset is written for each piece of geometry
(vertices, curves, etc) containing the nodes owned for that geometry. Then, the name of each geometry entity is
associated with the corresponding nodeset by writing a property name and designating the corresponding nodeset as
having that property. Nodeset numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base numbers for various orders
of geometric entities are shown in the following table. For example, nodes owned by curve number 26 would be stored in

associativity nodeset 40026.

Table 1. Nodeset ID base numbers for geometric entities

Geometric Entity Base Nodeset ID
Vertex 50000
Curve 40000
Surface 30000
Volume 20000

Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are also stored. For example,
the associativity nodeset for a surface would contain all nodes owned by that surface as well as the nodes on the
bounding curves and vertices.

Equation-Controlled Distribution Factors

By default, distribution factors on nodesets or sidesets are written with a constant value of "1" at each node. It is also
possible to vary the distribution factor for each node in a nodeset or sideset, using an equation to control the value of the
distribution factor at each node. To do so, an equation must first be defined using the command:

Create Equation "<expression>" name "<name>"
where expression is any mathematical expression which evaluates to a single number, and name is the name by which

this equation will be known. The expression is written using aprepro syntax, with a few differences from the use of
APREPRO in its usual context.

1. The expression as a whole is not wrapped in curly braces "{" and"}".
2. The expression may include any of the following pre-defined variables:

{x} - The x-coordinate of the current node
{y} - The y-coordinate of the current node
{z} - The z-coordinate of the current node
{n} - The CUBIT ID of the current node. This is the ID of the node in CUBIT, which may not be the
same as the node's ID in the Exodus Il file.

For example, to define an equation which varies from -10 to 10 based on the sine of the node's x_coordinate:
Create Equation "10*sin({x})" Name "my_equation"

Once an equation has been defined, it can be applied to a nodeset or sideset:

{NodeSet|SideSet} <id> Distribution Equation "<equation_name>"

360

CUBIT 11.0 User Documentation

For example, to apply the equation created earlier to nodeset 10:
Nodeset 10 Distribution Equation "my_equation"

When nodeset 10 is written to an Exodus Il file, "my_equation" will be evaluated once for each node in the nodeset, with
the values of {x}, {y}, {z}, and {n} set to appropriate values for the node. The result is used as the distribution factor for that
node.

Here is a complete example that writes out the distribution factors 0.0, 0.5, and 1.0 for the 3 nodes on the curve:

Create a straight line from (0,0,0) to (1,0,0)
create vertex 000

create vertex 100

create curve vertex 1 2

Mesh with 3 nodes

curve linterval 2

mesh curve 1

Create a block and a nodeset

block 1 curve 1

nodeset 1 curve 1

Define an equation and apply it to the nodeset
create equation "{x}" name "simple_eq"
nodeset 1 distribution equation "simple_eq"
Write the mesh

export mesh "temp.g" overwrite

Here is another complete example that varies the distribution factors for sideset 20 from zero to 1, depending on the
node's x-coordinate. The sideset is applied to sides of HEX20 elements, so each element side has 8 different distribution
factors.

Mesh a cube

brick x 10

mesh volume 1

Create a block of 20-noded hexes

block 1 volume 1

block 1 element type hex20

Apply a sideset to be used for a variable pressure
sideset 20 surface 1

Define an equation and apply it to the sideset
create equation " ({x}+5)/10" name "zero_to_one"
sideset 20 distribution equation "zero_to_one"

Write the mesh

export mesh "temp.g" overwrite

Note that distribution equations only affect Exodus Il output. Equations are currently ignored for other mesh file types.

See APREPRO in the appendix.

Cohesive Elements

Cohesive elements are used to model things like adhesive that may lose its bond. Elements in a cohesive region
originally have zero volume or area, and then expand as the simulation progresses.

Cubit supports 2D cohesive regions. Cohesive elements are implemented in Cubit as element blocks with an element
type of FLATQUAD. The cohesive region is identified by assigning geometric curves to the FLATQUAD element block.
When the element block is exported, each edge on the specified curves is represented in the exported file as a 4-noded
quadrilateral element with zero area. The quadrilateral element is formed by duplicating each node in the original edge
and then connecting the two original and two duplicate nodes to form a zero-area quadrilateral.

The image below shows how a FLATQUAD is represented in an exported mesh file. The figure on the left is how the
mesh appears in Cubit. The figure on the right is how the mesh appears in the output file. Note that the figure on the right
is a topological representation, not a true geometric representation. In reality, the nodes on the left side of block 100 are
coincident with the nodes on the right side of block 100, causing the pink elements to have zero area.

361

CUBIT 11.0 User Documentation

Topological

definition of
/whesiwe elements
*

Block 100 |

Block 100 Curve 100

Block 100 element type FLATQUAD
Export mesh “file.g”

Multiple Curves in FLATQUAD Blocks

Multiple curves may be assigned to a single FLATQUAD element block, as long as the curves do not form a branching
path. The figure below, for example, shows an acceptable configuration of multiple curves.

| Cohesive |
|~ element |
interface

Topalagical
_sdefinition of
/ cohesive elements

S,

Block 100

\
.- =

Block 100 Curve 100 101

Block 100 element type FLATQUAD
This is OK

Export mesh “file.g”

362

CUBIT 11.0 User Documentation

Although multiple curves may be assigned to a single cohesive block, the curves assigned to a block of type FLATQUAD
must not branch. A branch occurs whenever three or more curves share a common vertex, as shown in the figure below.
This will be corrected in future versions of Cubit.

Block 100 Curve 100 101 102

Block 100 element type FLATQUAD
This results in an inverted element
at the intersection point

Exodus Il Model Title

CUBIT will automatically generate a default title for the Genesis database. The default title has the form:
cubit(genesis_filename): date: time
The title can be changed using the command:

Title '<title_string>'

Transforming Mesh Coordinates

A mesh can be scaled and transformed to a new location as it is written to or read from an Exodus file. To transform a
mesh during import or export use the following command:

Transform Mesh {Input|Output}

[Scale <xyz_factor>]

[Scale <x_factor> <y_factor> <z_factor>]]
[Scale {X]Y|Z} <factor>]

[Translate <dx> [<dy> [<dz>]]]

[Translate {X]|Y|Z} <distance>]

[Rotate <degrees> about {X|Y|Z}]

[Reset]

363

CUBIT 11.0 User Documentation

This command may be repeated any number of times using any number of options. Transform commands are cumulative,
added to the effect of previous transforms. If more than one transformation is entered in the same command,
transformations are applied in the order they appear in the command.
To clear a transformation matrix, use the Reset option:

Transform Mesh {Input|Output} Reset
Mesh input and output transformations are also cleared when you reset the entire model using the Reset command.
Transforming a mesh during output does not change the position of the mesh within CUBIT. It only changes the nodal

positions written to the Exodus file. Nodal positions may be changed within CUBIT by transforming the body that contains
the mesh. See Geometry Transforms for information on how to apply transformations to a Body.

Transforming a mesh during input does change the position of the mesh with CUBIT. The file being read is not modified.
Transformations applied during mesh input are independent of transformations applied during mesh output.

The following example generates a simple mesh, writes the mesh with its coordinates scaled by a factor of 2, and then re-
imports that mesh, restoring the scaling to what it originally was in CUBIT.

brick x 10

volume 1interval 4

mesh vol 1

transform mesh output scale 2
export mesh 'temp.exo’

delete mesh

transform mesh input scale .5
import mesh 'temp.exo’

See Geometry Transforms for information on how to apply transformations to a Body.

See Nodeset and Nodeset Repositioning

See_Importing a Mesh

See Mesh Based Geometry

Exodus Coordinate Frames

CUBIT allows the user to define coordinate systems (frames) that are written to an Exodus Il file. These coordinate frames
are generally used as reference coordinate systems during analysis. In CUBIT, the user may define multiple exodus
coordinate frames. When created, a coordinate frame is assigned an id. Exodus coordinate frames can be created using
x-y-z coordinates, nodes or vertices with the following commands:

Exodus Create Coordinate Frame
<xval> <yval> <zval>//origin
<xval> <yval> <zval> //z-axis
<xval> <yval> <zval> //xz-plane
[tag {'R"|'C"|'S"}]

Exodus Create Coordinate Frame Node
<node_origin_id>

<node_zaxis_id>

<node_xzplane_id>

[tag {'R"|'C'|'S"}]

Exodus Create Coordinate Frame Vertex
<vertex_origin_id>
<vertex_zaxis_id>
<vertex_xzplane_id>
[tag{'R"|'C"|'S"}]
Using the 'tag' option specifies the type of coordinate frame, i.e., rectangular (R), cylindrical (C) or spherical (S). The

default coordinate frame type is rectangular. Exodus coordinate frames may also be listed and deleted using the
commands below:

364

CUBIT 11.0 User Documentation

List Exodus Coordinate Frame [ids] [<frame_id>]
Delete Exodus Coordinate Frame [ids] [<frame_id>| all]

Any exodus coordinate frames that exist at the time the exodus file is exported will be written out in the exodus file.

Exodus Il File Specification

Exodus Il Manual

The full Exodus Il manual is available from the web.

Element Block Definition Examples

Multiple Element Blocks

Multiple element blocks are often used when generating a finite element mesh. For example, if the finite element model
consists of a block which has a thin shell encasing the volume mesh, the following block commands would be used:

Block 100 Volume 1

Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01

Mesh Volume 1

Export Genesis ‘block.g'

This sequence of commands defines two element blocks (100 and 200). Element block 100 is composed of 8-node
hexahedral elements and element block 200 is composed of 4-node shell elements on the surface of the block. The
"thickness" of the shell elements is 0.01. The finite element code which reads the Genesis file (block.g) would refer to
these blocks using the element block IDs 100 and 200. Note that the second line and the fourth line of the example are
not required since both commands represent the default element type for the respective element blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the example would be omitted and the
Mesh Volume 1 line would be changed to, for example

Mesh Surface 1 To 6.

Two-dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar to FASTQ. The user must first
assign the appropriate surfaces in the model to an element block. Then a Quad* type element may be specified for the
element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will result. In writing a two-
dimensional Genesis database, CUBIT ignores all z-coordinate data. Therefore, the user must ensure that the Element
Block is assigned to a planar surface lying in a plane parallel to the x-y plane. Currently, the Quad* element types are the
only supported two-dimensional elements. Two-dimensional shell elements will be added in the near future if required.

365

CUBIT 11.0 User Documentation

Immersive Topology Environment
for Meshing (ITEM)

The Cubit Geometry and Meshing Toolkit team at Sandia has taken on the ambitious task of reducing the time for
simulation by specifically addressing the bottlenecks in the mesh generation process. It is not unusual for the meshing
process to take upwards of three-quarters of the entire simulation time. With its many tools developed for a wide range of
application areas, it takes time to gain enough proficiency in Cubit to quickly generate a mesh from a complex geometry.
As a result, the Immersive Topology Environment for Meshing (ITEM) was developed. ITEM is a user-interactive meshing
tool that guides the user through a typical mesh generation process.

With the ultimate goal of reducing the time to generate a mesh for simulation, ITEM has been developed within the Cubit
Geometry and Meshing Toolkit to take advantage of its extensive tool suite. Built on top of these tools it attempts to
improve the user experience by accomplishing three main tasks:

1. Guiding the user through the workflow
2. Providing the user with smart options
3. Automating geometry and meshing tasks

Guiding the user through the workflow.

In software of any complexity where usage may be occasional or infrequent, the overhead of learning the new tool to a
point of proficiency may be daunting. Given a solid model that may have been designed for manufacturing purposes, the
analysts may be faced with generating a mesh. They may not be working with Cubit on a daily basis, but would like to
take advantage of the powerful tools provided by the software.

To address this, ITEM provides a wizard-like environment that steps the user through the geometry and meshing process.
For someone unfamiliar with the software, it provides an interactive, step-by-step set of tools for accomplishing the major
tasks in the process. For those more familiar with the tools, it serves as a reminder of the major tasks, but is flexible
enough to accommodate a more iterative approach, allowing them to jump between major tasks easily. Currently
restricting the workflow to models requiring three-dimensional, solid elements, ITEM uses the following steps:

=

Define the Geometric Model: Import a CAD model or create geometry within the Cubit environment.

2. Set up the model: Define basic information such as element shape, volumes to be meshed and element sizes
or budgets.

3. Clean up the geometry: Detect common issues and simplify geometric features on the CAD model.

4. Meshing: Perform operations to make the model meshable, such as imprint/merge, scheme selection,
decomposition and performing the meshing.

5. Validate the Mesh: Check element quality and perform mesh improvement operations

6. Apply boundary conditions regions: Define regions where boundary conditions may be applied using
nodeset, sideset and block definitions.

7. Export the mesh: Define a target analysis code format and export the mesh.

Providing the user with smart options.

Solid models used for analysis may have a huge variety of different characteristics that may prevent them from being
easily meshed. Questions such as, What are the problems associated with my model? What are the current roadblocks to
generating a mesh on this model? and What should | do to resolve the problems, are constantly being asked by the
analysts. Without an extensive knowledge of the tools and algorithms, it may be difficult to answer these questions
effectively.

ITEM addresses this issue by providing smart options to the user. Based on the current state of the model, it will
automatically run diagnostics and determine potential solutions that the user may consider. For example, where unwanted
small features may exist in the model, ITEM will direct the user to these features and provide a range of geometric
solutions to the problem. Scrolling through the solutions provides a preview of the expected result. The user can then
select the solution that seems most appropriate and execute the solution to change or simplify the geometry. This
diagnostic-solution approach is the basis for the ITEM design and is the common mode of user interaction while in this
environment. This contrasts with the more traditional hunt-and-guess approach of providing the user with an array of
buttons and icons that they may choose from and guessing what may result. ITEM, on the other hand, serves in effect, as
an expert providing guidance to the user as they proceed through the geometry and meshing process.

366

CUBIT 11.0 User Documentation

Automating geometry and meshing tasks.

With all of the advanced research and development that has gone into the meshing and geometry problem, a push-button
solution for any arbitrary solid model may seem like the ideal objective of any meshing tool. Although for many cases, this
would be the best solution, for others it may not even be desirable. A push-button solution assumes a certain amount of
trust in the geometric reasoning the software chooses to provide. This may be more trust than an occasional user who is
tasked with a high consequence simulation may be willing to give. Even if the user is willing to accept full automation, in
many cases, the geometric complexity of the model may be beyond the capability of current algorithms to adequately
resolve.

On the other hand, once the user is familiar with the characteristics of the solutions that the software provides, they may
not be concerned with examining and intervening on every detail of the model creation process. Instead, in the interest of
increasing efficiency, they may want the fastest solution possible. Providing the option for the user to automate as much
of the geometry and meshing process as possible is another important aspect of ITEM.

For various characteristic geometric problems that are encountered in a solid model, ITEM can determine from the
potential geometric solutions, which of them may be most applicable and apply that solution without any user intervention.
For many configurations of geometry, a completely automated solution may be available. For others, only a portion of the
process may be able to be automated. Where an adequate solution cannot be determined automatically, the smart
options described above are available to help guide the user. As new advances in geometric reasoning and advanced
meshing algorithms are developed, ITEM will incorporate these into the solutions for automation.

It should be clear that ITEM is not intended to be a fully automated system for meshing solid models. Instead it is intended
to be a flexible environment that will guide the user through the model generation process by offering solution alternatives
and providing automation should the user choose. The remainder of this document is organized according to the basic
workflow used in ITEM. The objective is to describe the general problems that may be encountered in developing an
analysis model and how ITEM and Cubit may be used to address the problems. In developing this environment, many
new innovative tools were invented and developed to help support this new approach to mesh and model generation.

How to Use the ITEM Wizard

The ITEM Workflow

The Immersive Topology Environment for Meshing (ITEM) is a wizard-like environment that guides the user through the
mesh generation process from geometry definition to export. ITEM was designed to provide a step-by-step set of tools to
help new users generate a mesh with very little previous knowledge of the CUBIT program. But ITEM is also flexible
enough to accomodate advanced users who want to use a more iterative approach, or who just want to use ITEM for a
specific tool or panel.

The main ITEM task page is shown below. To access this page, click on the "wizard hat" icon from the Power Tools
window.

367

CUBIT 11.0 User Documentation

3|8 | @9 ¥|
Task Description A9 2
Create youn finite element mesh by clicking an =

the linkz balow. Clicking a link displays toalz
and wetiuckions [or completing thal slep,

Import or create geometry
Setup the FEA model
Prepare geometry

Mesh the geametry
Yalidate the mesh

Define boundary conditions
Expodt the mesh

How io Uze the ITEM Wizard

Main ITEM Task Panel

The main item tasks are shown both in the text window, and also along the sidebar. The icons in the sidebar are available
from any of the ITEM panels. It is acceptable to jump to different tasks during the process, although beginning users may
just want to follow the steps in order. To get to the main task page, click on the Task icon on the sidebar during any step
in the process.

Many meshing tasks require an iterative approach to the mesh generation process. For your convenience, if you do click
on one of the task buttons from a different panel, it will take you to the last visited panel in that section. For example, if you
are on the mesh generation page, and you click on the prepare geometry section, it will take you to the last page you
visited in the prepare geometry section.

There are two help links at the bottom of the main task page. The first link will open this document which describes the
general ITEM process and how to use the panels. This page is only accessible from the main task page. The second link
opens the main ITEM documentation which describes each process in the ITEM mesh generation process in detail. This
document can be accessed from any of the ITEM panels.

To proceed through the ITEM panels you must either click on a task or click on the "Done" button at the bottom of each
page. There is no "Back" button on the ITEM interface. But in most cases, clicking the "Done" button works like a "Back"
button.

Using an ITEM Panel

The item panels are designed to be self-explanatory, with plenty of documentation on each page, and access to more
help if needed. However, it does help to be generally familiar with the main types of panels.

368

CUBIT 11.0 User Documentation

Task panels that link to other ITEM panels

Some ITEM panels provide a list of tasks that link to other ITEM panels. Sometimes the tasks are designed to be
completed in sequential or iterative fashion. In that case, you will be returned to the task page after selecting done on
each sub-panel where you can select the next task. The Prepare Geometry panel is an example of this case. Each of the
tasks with a warning flag should be completed. As you return to this panel, you may need to run the diagnostics again,
and possibly even revisit previous task pages.

In other cases, the list of tasks is a presents a list of choices, from which you will only select one option. The Import

Geometry Page shown below is such an example. It gives a list of different geometry import/creation options and you just
select one of the alternatives.

Power Tooks e L Power Tools
38 @2 ¥ | || [@|2 ¥

mperoBuld Ay P
Diedine: the geometny ba be used bo genesabe il
thiz mesh. Chooga one of the folowing options:
Dpen a CUBIT file

Canfirue a praviousy saved CLIBIT projact
This file can cortain both geometp and mesh

Piepate Geomeliy T
Follaw the sleps below to help pepaie
ot geamelsy for meshng

Fun Chacked Dragroshcs:

Impoita CAD model
Select 2 CAD He from the fle beowser.

@r; Fixt inwalid Lopol

Remove small

o ¥ fealuras

Qﬁ&mﬂ.ﬂhﬂﬂ

Buwild my ovwn geometry

Llze the command panels io cresls pomdnes,
defire ransiormatiors, perfom boolean

Flaaibel bl apedations, and buld anfitie: from the
0 F gl badtan-up.
? Mg Informalion Done
Set element sizes -
Campletrg ane geamelny prepsarston a—
phase can somehimes infnoduce problems
n anothes 'You may resd to eyl deps
i mske sune al problems ate esabed =
completely,
Prepare Geometry Import Geometry
ITEM Panel ITEM Panel

Task Panels that Link to Control Panels

A few of the ITEM task panels will provide links to existing control panel topics. Clicking on a link from one of these panels
will NOT open a new panel, but will open the corresponding control panel. The Define Boundary Conditions page is an
example of this type of panel.

369

CUBIT 11.0 User Documentation

3 8 @2 ¥ |
Agzign boundary condbions bo the geomelry &
to repeesent physical phenomena such a3
Ioads, constrantz, mibal condiice: and
materizl propete:
Define nodezets
Defi :
Define blocks
@ More Information D ome

Define Boundary Conditions Panel
Set-up Panels

A set-up panel is used to provide input or set-up options for your model. The most prominent set-up panel is the Set-up
FEA Model page which is used to define mesh budget, element type, and element size. Another set-up page is the Define
Metrics page under the Validate Mesh task. This panel is used to define quality metrics for your model. These panels
provide useful information for the diagnostics used in other panels.

370

CUBIT 11.0 User Documentation

3| & @2 |

Select the gemert shape
i Hexahadial " Tetrahedal

Updale Setup
EEA Model Size
Input &n Element Budget, Element Size, o use the

Mesh Denzily sider 10 edablish an Elemenl
Budge!l and Size.

Element Budget: 4ppiosmate rumber of
abamenilz to be generated

Element Size dverage length ol element
edges in lhe madel

Mezh Density: U this control to adpust the
Elemnent Budget and Element Size.

Taigel Mezh Denzily

Hint: Uze the Magic Mesh

Bulton: [top nght coener] at any J"'
lime bo attempt bo mesh the

model.

-:? More Infommation

=
=]
g

Setup FEA Model Panel

Diagnostic Panels

The most useful type of ITEM panel is the diagnostic panel. These panels each focus on a specific diagnostic such as
invalid topology, small features, blend surfaces, overlapping surfaces, or meshability. Most of theses panels contain some
or all of the following features.

Diagnostic Button - Clicking on this button will run a series of tests on the model.
Output Window - Displays the results of the diagnostics and lists entities with problems. Includes a right-click
menu with visualization and other options.

e Automatically Repair Button - Tries to solve the problems automatically.

e Solution Window - Presents a list of specific solutions based on the entity you select in the output window.
This window also contains several right-click context menu items for each solution, including a "More
Information" button which will open the documentation to information about that specific task. Another useful
feature of the solution window is that in most cases clicking on one of the solutions will preview that option in
the graphics window.

Execute Button - Executes the solution selected.

Additional Options - Sometimes you won't see your desired solution in the list. Additional solutions with brief
descriptions are provided at the bottom of the panel. Clicking on these links will open the corresponding control
panel.

371

CUBIT 11.0 User Documentation

e More Information Link - Opens a page describing the diagnostics and solutions used for this panel.

The Small Features Panel shows an example diagnostic panel in ITEM.

*alalﬁli& &I

Smal feahuies can over-consirain pour mesh and
resull in poot slements, First enber & soe below
wikich helps Cubil indertfy smal fealuas

Small Curve
L atat 5] |

[w dauito Updats Dabact Small Featuras

Consider comecting curves o suilfaces listed
below. Select a curve o suiface 1o wiew the
pozshle sokdiors or chooss the Automatically
Hepar Problems buthon below to let Cubit
automaticaly comect the problems.

dutomatcal) Repsi Pioblesms |

Ertiy 1D | Entity Data |
= Han:lws-uh:m (1]4ma
7.38379560

E"Srml Cuves (] Length
ZiSmall Sufaces (4] Aiea
S Suiface 34 1,4B591049
#Suface 35 148891049
LSuiface 38 1.4B591043
+ Surface 39 1.4BE91044

Solutionz

Possible Sahiions =
;‘-Dn al spiil

- Spit #1

-Spil B2

i Composite with Surface 23

r-Composite with Surfaca 21

I-Compasie with Suface 20 -]

e

ilpa cansider the folowing sohulions ﬂ

avalable fram the Cubil Command Panel
Tweak Surfac

Real oparation to make small adiestments ko
asuface.

Composite Curve/Surface
Wilua! operations o combine sdjacent
cuives of suilaces. ﬂ

%:’ Maore Infoimalion Done

Remove Small Features Diagnostic Panel

372

CUBIT 11.0 User Documentation

Undo Button

The Undo button allows you to reverse the most recent command. To enable the Undo button, click on the "Enable Undo"
option from the Edit menu. The undo button works by saving information about your model after each step. For large or
complex models, this can be time consuming, so you may need to disable the undo feature. Additionally, not all
commands are enabled for undo. Many of the graphics and meshing commands, and various default settings are not
included. Within ITEM, many commands are bundled into a single button click. Clicking undo will attempt to reverse all of
the executed commands. See the command line window for the results of the undo command.

Magic Mesh Button

This button, shown at the top of each ITEM panel, provides the user with the opportunity to use Cubit’s internal
automation algorithms to generate a mesh. In addition to simply issuing a mesh command, it will attempt to execute the
following steps.

Geometry Cleanup: Check for small or ill-defined geometry and automatically resolve it
Auto-scheme: Automatically set meshing schemes and select sources and targets for hex meshing
Decomposition: If hex meshing, attempt to decompose the volume to admit a sweep or mapped mesh
Force Sweeps: For almost-sweepable geometry, modify the linking surfaces to force a sweep
Imprint/Merge: For assemblies, imprint adjacent volumes and merge common surfaces

Overlap check: Check for any remaining overlapping volumes and attempt to resolve merge problems
Mesh sizing: For tetrahedral meshing, automatically define a sizing function based on geometry characteristics
Interval Matching: For hex meshing, coordinate the assignment of curve intervals.

Sweep grouping: Determine an appropriate order to mesh volumes to reduce dependencies

Mesh: Perform the mesh operation volume(s)

Mesh Quality: Check mesh quality and locally optimize if necessary

If for any reason, Cubit is unable to complete these steps without further user intervention, the process will stop and the
user will directed to continue with the ITEM workflow. For simple geometries, executing the magic mesh button at this
phase of the workflow may be all that is necessary to completely define a good quality mesh. For other more complex
geometry, considerable user intervention may be required.

The magic mesh button may be executed at any time during the ITEM workflow by selecting the button at the top right
corner of the ITEM panel. Once the user has visited the various panels of the ITEM interface to provide user intervention,
the automatic execution of the appropriate operations will not longer be attempted.

Getting Help

There are several ways to get help from within the ITEM interface. Most of these have already been discussed, but they
are listed here again for reference:

How to Use ITEM - This document which is available only from the main task page
Guide to Meshing in ITEM - A document which describes the ITEM workflow, and how to use the diagnostics
on each page. This is accessible from each page using the More Information links.

e Individual help topics for specific solutions - Opens the documentation to help for each specific solution
topic. This is accessible from the right-click menu when a command is selected in the solutions window.

e Documentation included on panels - Many of the panels contain brief descriptions and explanations to
describe the features and tools on that panel.

Defining the Geometric Model

Various methods may be used to define a geometric model. In most cases, a solid model is created in a commercial CAD
tool such as Pro/Engineer or Solidworks. It can also be generated natively within Cubit using geometry commands. One of
the most time consuming tasks in developing an analysis model is in dealing with geometric anomalies. Carefully
considering how the model is constructed and what format the model will be defined in can eliminate many potential
problems downstream in the model creation workflow. The following describes the various solutions for defining geometry
within Cubit along with their pros and cons:

(] Geometry Formats

373

CUBIT 11.0 User Documentation

(] Creating Your Own Geometry

(] Scripting
(] CUB Files

Geometry Formats

Cubit can use one of three different commercial geometry representations, ACIS (.sat, .sab), Pro/E (.g) or Catia (.cat). It
may also use a facetted format (MBG) that is developed in-house at Sandia. When a model of any of these formats is
imported, Cubit uses the appropriate third party geometry kernel to directly manage and evaluate the geometry. Since the
geometry is considered “native” when any of these formats is used, no translation step is required.

Since commercial solid modelers do not necessarily agree on formats and representations, using a translation process to
convert a non-native format to a native format, can introduce errors in the geometry. While this in itself may not be a
show-stopper, it can frequently add hours to an otherwise simple process while the user is forced to clean up dirty
geometry. Neutral formats such as STEP and IGES are common in the CAE industry. They can often be an ideal solution
for representing the analysis solid model. In Cubit, when importing a neutral format, it is automatically translated to the
ACIS format. The user should be careful however in selecting these formats as commercial solid modeling engines
frequently interpret standard specifications for these formats in different ways sometimes resulting in unusual results.
Wherever possible a native format should be used.

Native geometry kernels provide the most accurate way for transferring data between solid-model based applications.
Since these geometry kernels must be licensed and incorporated into the Cubit distribution separately, one drawback is
the additional licensing and cost for maintaining these kernels. Cubit is currently able to provide licenses for ACIS and
Pro/E kernels for government and academic use. Additional licensing arrangements may be required for Catia or for any
commercial use.

Creating your own geometry

Cubit offers a wide variety of tools for creating geometry natively. The advantage to this is the ability to control the
geometry creation process without the need for another CAD tool. Although Cubit is not designed to be a CAD tool it does
provide many tools for both bottom-up and primitive creation.

Bottom-up creation refers to the process of building geometry from its basic components starting with vertices, curves,
surfaces and then volumes. This process can be somewhat tedious, but is often useful for generating auxiliary geometry
once a CAD model has been imported.

Primitive creation refers to the various operations for generating geometric primitives such as bricks, spheres, cylinders
and cones. Once defined, operations for repositioning the objects and performing Boolean operations between them may
be used. Relatively complex models may be generated using this approach.

Scripting

One advantage to generating your own geometry within Cubit is the ability to parameterize the construction of the model.
Cubit utilizes a rich command language that can be stored as a script or journal file. Parameters representing dimensions
of objects may be defined in the script and conveniently adjusted to update the geometry representation. For more
ambitious users, Cubit also has the ability to interpret python scripts, allowing a high degree of customization that can
employ the full capability of the python scripting language.

It should be noted that when using Cubit, commands are automatically echoed to an external temporary journal file on
disk and to the history window. Observing these commands is a good way to become familiar with Cubit’s internal
command language. Copying and pasting selected commands to a text editor is an ideal method for building a
parameterized journal file. Journal files may be built up and played back to reproduce the entire process of building an
analysis model.

CUB Files
A CUB file is Cubit’s database file. You may want to think of it as a snap-shot of the current state of the model. While
journal files record the process for creating the model, a CUB file stores only the end state. It can include both geometry in

its native format and any mesh information as well as attributes and boundary condition information. Restoring a CUB file
will write over any existing data you currently have defined.

Setting up the Finite Element Model

Once the geometry to be meshed has been imported or created, the first step to defining the mesh is to set up the model.
Basic parameters that are needed through the rest of the ITEM workflow are defined at this stage. Subsequent
diagnostics and workflow may change based on how the model is initially set up.

374

CUBIT 11.0 User Documentation

Element Shape

Either a hexahedral or tetrahedral element shape may be selected. The meshing algorithm used to mesh the volumes will
change based on this setting. Specific element characteristics such as the order of the element (i.e. TET10, HEX20) may
be specified at a later time. The steps that will be displayed in the workflow will change based on the element type that is
selected.

FEA Model Size

The number of elements or average size of the elements is an important aspect of defining your analysis model.
Geometric features that are considerably smaller than the average element size, in most cases should be ignored since
the mesh resolution will not be able to adequately capture them. Defining the element size at this point in the workflow
permits subsequent diagnostic tests and operations to have a relative measure of what is “small’. More detailed sizing
attributes such as biasing and geometry-adaptive sizing may be defined later in the ITEM workflow.

One of three different mechanisms may be used to define the size, element budget, element size and mesh density. Each
of these values is dependent on the other. As a result, changing one value will automatically change the other.

e Element Budget: This value is an approximate number of elements that should be generated in the entire
model. The element budget for hexahedra, Nhex, is related to the element size, esize, by the following
relationship:

& =z P;u::l:z‘el

sime
Nk

N

Where Vmodel is the geometric volume of the solid model. The element budget for tetrahedra vs. hexahedra is
approximately 1:7. That is, for an equivalent edge length, a tetrahedral mesh will contain roughly seven times as
many elements as a hexahedral mesh.

e Element Size: Element budget and mesh density are indirect methods for setting the element size, esize. This
value can also be set explicitly. It represents the approximate average edge length of elements in the model.
This size will determine the relative definition of small for subsequent diagnostic tests and will be used to set the
mesh size the meshing algorithms will use.

e Mesh Density: The mesh density is represented by an integer between 1 and 10, where 1 is the finest resolution
and 10 is the coarsest. It is a heuristic measure of how fine of a mesh will be generated and permits the user to
indirectly set an element size without explicitly defining a real value. In most cases, the mesh density, md is
related to the element size, esize by the following heuristic relationship:

g, =3V (0.03+0.00045m, "

Where Vmax is the of the geometric volume of the largest volume in the solid model. Changing the target mesh
density will display a preview of the approximate nodal spacing on the curves of the model in the graphics
window.

Clean Up the Geometry

Meshing packages have the challenge of dealing with a host of geometry problems. Many of these problems can be
generalized as file translation issues. Typically, the geometry used in a meshing package has not been created there but
in one of many CAD packages. Exporting these files out of CAD and into a neutral file format (IGES, STEP, SAT)
accepted by the meshing software can introduce misrepresentations in the geometry. If the CAD and meshing packages
do not support the same file formats, a second translation may be necessary, possibly introducing even more problems.

Another complication caused by file translation is that of tolerances. Some CAD packages see two points as coincident if
they are within 1e-3 units, while others use 1e-6. If the meshing software's tolerance is finer than the CAD package's, this
disparity in tolerance can cause subsequent geometry modification operations in the meshing package to inadvertently
create sliver features, which tend to be difficult and tedious to deal with. This tolerance problem also causes misalignment
issues between adjacent volumes of assemblies, hindering the sharing of coincident geometry in order to produce a
conformal mesh.

375

CUBIT 11.0 User Documentation

Modeling errors caused by the user in the CAD package is another problem that the meshing package has to correct. In
the CAD package, the user may not create the geometry correctly, causing some parts to overlap, or introduce small gaps
between parts that should touch. Many times these problems are detected in the meshing package at a point when it is
not feasible to simply go back into the CAD system and fix the problem, so the meshing package must be capable of
correcting it.

Several approaches for addressing the geometry cleanup problem have been proposed in the literature, but they typically
provide operations that are automatically applied to the geometry once one or more topology problems have been
identified. While very effective in many cases, they generally lack the ability for the user to have control over the resolution
of these CAD issues while still maintaining the option for automation. The ITEM environment provides tools to both
diagnose these common issues and to provide a list of solutions from which the user may select that will correct the
problems.

For the purposes of mesh generation, features in a solid model that should be carefully considered and addressed prior to
meshing generally fit in one of four categories:

e Bad geometry representation As a result of translation errors between CAD representations, errors or
differences in the way the geometry is interpreted may occur. Depending on the severity of the problem,
sometimes a mesh can be generated even with a less-than perfect geometric representation, however, in most
cases, these should be resolved before meshing.

e Small details in the model In some cases there exist small details in the geometry that, if meshed, would result
in very small elements and a potentially huge element budget. Small curves and surfaces can sometimes result
from details in the design solid model that may not be necessary for analysis or may even be a result of
careless construction of the CAD model. In either case, it is important to remove or modify these features before
meshing.

e Compatible topology for meshing scheme Several meshing algorithms, such as the structured, mapping and
sweeping techniques require a specific configuration of vertices, curves and surfaces in order to operate.
Operations to decompose the geometry into a meshable topology are often needed. Other unstructured
techniques like paving, and tetrahedral meshing do not require decomposition.

e Conformal topology for assemblies Assemblies of parts are often required to have a conformal mesh across

their interface. (ie. Shared nodes at a common boundary). The operations imprint and merge are often required
to connect parts together so that when meshed, the representation will be a single continuous mesh.

Being able to recognize when a problem exists and what operations to apply to resolve issues in each of the four
categories described above, is indeed an art-form and requires significant experience to become proficient. ITEM will not
take the place of an experienced user, but it is intended to offer the user help along the way by detecting potential
problems and suggesting solutions they might consider.

Bad geometry representation

As a result of translation errors between CAD representations, errors or differences in the way the geometry is interpreted
may occur. Depending on the severity of the problem, sometimes a mesh can be generated even with a less-than perfect
geometric representation, however, in most cases, these should be resolved before meshing.

Detecting Invalid Geometry

In most cases, bad or invalid topology or geometry definition comes from problems which arise in the CAD translation
process. CUBIT’s main geometry kernel, ACIS is used to represent the model if it has been imported using an IGES or
STEP format. Translation to and from these neutral formats is frequently the cause of bad geometry. ITEM will use the
geometry validation procedures built into the ACIS kernel to detect if there is any bad geometry and will list the entities
that may be causing a problem.

Since the validation procedures are specific to ACIS, models that may have been imported from another native format
such as Pro/E will not provide this diagnostic. Although this may seem like a severe limitation, importing native formats
rarely have bad geometry, since no translation process is necessary.

It is good practice to always check your model for bad geometry before proceeding to other geometry or meshing
operations. In some cases, if a webcut or meshing operation fails, the cause is an invalid geometric definition that has not
been adequately healed. Resolving bad geometry problems up front, in most cases is essential to obtaining a mesh. On
the other hand, if the location of the bad geometry in the model is such that it will not effect subsequent Boolean or
decomposition operations, there may be a chance that completely resolving bad geometry is not necessary. Simply
ignoring bad geometry that cannot be easily repaired with automatic procedures may be a reasonable solution, provided
the user is aware of the potential limitations.

376

CUBIT 11.0 User Documentation

Resolving Invalid Geometry

To resolve invalid geometry, ITEM uses the heal procedure built into the ACIS geometry kernel. In almost all cases, this is
a fully automatic procedure. Simply selecting the automatic repair button will make the appropriate adjustments to the
geometry. This can be done one volume at a time by healing the owning volume, or by healing the full model all at once. If
healing was successful, No problems detected should be displayed.

If auto repair does not successfully repair the geometry, you may want to try additional options available in Cubit for
healing. See the Cubit documentation for a complete description of additional healing options.

Small details in the model

The small feature removal area of ITEM focuses on identifying and removing small features in the model that will either
inhibit meshing or force excessive mesh resolution near the small feature. Small features may result from translating
models from one format to another or may be intentional design features. Regardless of the origin small features must
often be removed in order to generate a high quality mesh.

ITEM will recognize small features that fall in four classifications:

small curves

small surfaces

narrow surfaces

surfaces with narrow regions

N =

These operations may involve either real, virtual or a combination of both types of operations to remove these features. A
virtual operation is one in which does not modify the CAD model, but rather modifies an overlay topology on the original
CAD model. Real operations, on the other hand directly modify the CAD model. Where real operations are provided by
the solid modeling kernel upon which CUBIT is built, virtual operations are provided by CUBIT's CGM (Tautges, 00)
module and are implemented independently of the solid modeling kernel. The following describes the diagnostics for
finding each of the four classifications of small features and the methods for removing them.

Small Curves

Diagnostic: Small curves are found by simply comparing each curve length in the model to a user-specified characteristic
small curve size. A default epsilon (g) is automatically calculated as 10 percent of the user specified mesh size, but can be
overridden by the user.

Solutions: ITEM provides three different solutions for eliminating small curves from the model. The first solution uses a
virtual operation to composite surfaces. Two surfaces near the small curve can often be composited together to eliminate
the small curve as shown in Figure 1(a).

The second solution for eliminating small curves is the collapse curve operation. This operation combines partitioning and
compositing of surfaces near the small curve to generate a topology that is similar to pinching the two ends of the curve
together into a single point. The partitioning can be done either as a real or virtual operation. Figure 1(b) illustrates the
collapse curve operation.

The third solution for eliminating small curves is the remove topology operation. This operation can be thought of as
cutting out an area around the small curve and then reconstructing the surfaces and curves in the cut-out region so that
the small curves no longer exist. (Clark, 07) provides a detailed description of the remove topology operation. This
operation has more impact on the actual geometry of the model because it redefines surfaces and curves in the vicinity of
a small curve. The reconstruction of curves and surfaces is done using real operations followed by composites to remove
extra topology introduced during the operation. Figure 1(c) shows the results using the remove topology operation.

377

CUBIT 11.0 User Documentation

V¥ €9
4-Q

Figure 1. Three operators used for removing small curves (a) composite; (b) collapse curve; (c) remove topology

Small and Narrow Surfaces

ITEM also addresses the problem of small and narrow surfaces. Both are dealt with in a similar manner and are described
here.

Diagnostic: Small surfaces are found by comparing the surface area with a characteristic small area. The characteristic
small area is defined simply as the characteristic small curve length squared or €7,

Narrow surfaces are distinguished from surfaces with narrow regions by the characteristic that the latter can be split such
that the narrow region is separated from the rest of the surface. Narrow surfaces are themselves a narrow region and no
further splits can be done to separate the narrow region. Figure 2 shows examples of each. ITEM provides the option to
split off the narrow regions, subdividing the surface so the narrow surfaces can be dealt with independently.

Narrow regions/surfaces are also recognized using the characteristic value of . The distance, d; from the endpoints of
each curve in the surface to the other curves in the surface are computed and compared to e. When di<e other points on
the curve are sampled to identify the beginning and end of the narrow region. If the narrow region encompasses the entire
surface, the surface is classified as a narrow surface. If the region contains only a portion of the surface, it is classified as
a surface with a narrow region.

Figure 2. Two cases illustrating the difference between surfaces with narrow regions and narrow surfaces

378

CUBIT 11.0 User Documentation

Solutions: ITEM provides four different solutions for eliminating small and narrow surfaces from the model. The first
solution uses the regularize operation. Regularize is a real operation provided by the solid modeling kernel that removes
unnecessary/redundant topology in the model. In many cases a small/narrow surface's definition may be the same as a
surface next to it and therefore the curve between them is not necessary and can be regularized out. An example of
regularizing a small/narrow surface out is shown in Figure 3.

Figure 3. When the small surface’s underlying geometric definition is the same as a neighbor the curve between them can
be regularized out.

The second solution for removing small/narrow surfaces uses the remove operation. Remove is also a real operation
provided by the solid modeling kernel. However, it differs from regularize in that it doesn't require the neighboring
surface(s) to have the same geometric definition. Instead the remove operation removes the specified surface from the
model and then attempts to extend and intersect adjacent surfaces to close the volume. An example of using the remove
solution is shown in Figure 4.

Figure 4. The remove operation extends an adjacent surface to remove a small surface

The third solution for removing small/narrow surfaces uses the virtual composite operation to composite the small surface
with one of its neighbors. This is very similar to the use of composites for removing small curves. An example is shown in
Figure 5.

Figure 5. Composite solution for removing a narrow surface

379

CUBIT 11.0 User Documentation

The final solution for removing small/narrow surfaces uses the remove topology operation (Clark, 07). The remove
topology operation behaves the same as when used for removing small curves in that it cuts out the area of the model
around the small/narrow surface and replaces it with a simplified topology. In the case of a small surface where all of the
curves on the surface are smaller than the characteristic small curve length, the small surface is replaced by a single
vertex. In the case of a narrow surface where the surface is longer than the characteristic small curve length in one of its
directions, the surface is replaced with a curve. The remove topology operation can be thought of as a local dimensional
reduction to simplify the topology. The remove topology operation can also be used to remove networks of small/narrow
surfaces in a similar fashion. Examples of using the remove topology solution to remove small/narrow surfaces are shown
in Figures 6 and Figure 7.

small
surface

new local
topology created

Figure 6. Remove topology solution for removing a narrow surface

Figure 7.Remove topology solution for removing a network of narrow surfaces

Contact Surfaces

A contact surface is two surfaces which overlap, but are not merged. In a physical sense, this could represent two
surfaces which come in contact with each other, as opposed to two surfaces which merely form a partition for meshing
purposes. It is easy using the ITEM interface to identify and select contact surfaces in your model. Simply select surfaces

in the graphics window and press the "Add" button on the ITEM interface. The contact surfaces will be shown in the
window.

To remove a contact surface from the list, right click on the surface and select "Not a Contact Surface" from the context
menu to remove that specific surface, or "Remove all contact surfaces" to remove all contact surfaces. Several other
visualization tools are also available from the context menu including Zoom, Fly-in, Draw, List, Locate, etc.

380

CUBIT 11.0 User Documentation

Resolving Problems with Conformal Assemblies

Where more than a single geometric volume is to be modeled, a variety of common problems may arise that must be
resolved prior to mesh generation. These are typically a result of misaligned volumes defined in the CAD package or
problems arising from the imprint and merge operations in the meshing package. White describes the issues and
proposes an automatic solution for resolving the imprint/merge problem where a discrete version of the geometry is used
White, 02]. ITEM addresses some of the same problems by allowing the option for user interaction as well as full
automation using the CAD geometry representation. The proposed environment utilizes two main diagnostics to detect
potential problems: the misalignment check and overlapping surfaces check. Associated with both of these are solutions
that are specific to the entity and from which the user may preview and select to resolve the problem.

Resolving Misaligned Volumes

Diagnostics: The near coincident vertex check or misalignment check is used to diagnose possible misalignments
between adjacent volumes. This diagnostic is performed prior to the imprint operation in order to reduce the sliver
surfaces and other anomalies which can occur as a result of imprinting misaligned volumes. With this diagnostic, the
distance between pairs of vertices on different volumes are measured and flagged when they are just beyond the merge
tolerance. The merge tolerance, T, is the maximum distance at which the geometry kernel will consider the vertices the
same entity. A secondary tolerance, Ts, is defined where Ts > T which is used for determining which pairs of vertices may
also be considered for merging. Pairs of vertices whose distance, d is T <d > Ts are presented to the user, indicating
areas in the model that may need to be realigned. Although not yet implemented at this writing, the misalignment check
should also detect small distances between vertices and curves on adjacent volumes.

Solutions: When pairs of vertices are found that are slightly out of tolerance, the current solution is to move one of the
surfaces containing one vertex of the pair to another surface containing the other vertex in the pair. Moving or extending a
surface is known as tweaking. Solutions for determining which surfaces to tweak are generated as follows:

Given that vertex A and vertex B are slightly outside of tolerance T by a distance delta as shown in Figure 1.
Gather all surfaces that contain vertex A. Call this group of surfaces Group A.
Gather all surfaces that contain vertex B. Call this group of surfaces Group B.

For each surface in Group A, extend it out twice its size. Call this surface extended A
O See if extended A overlaps within a distance T and delta to any surface in Group B.
0 If such an overlap pair is found, present two mutually exclusive solutions:
= tweak surface A to surface B

= tweak surface B to surface A

i = L P L

Figure 1. Example of a solution generated to correct misaligned volumes using the tweak operator

The result of this procedure will be a list of possible solutions that will be presented to the users. They can then
graphically preview the solutions and select the one that is most appropriate to correct the problem.

Correcting Merge Problems

The merge operation is usually performed immediately following imprinting and is also subject to occasional tolerance
problems. In spite of correcting misalignments in the volume, the geometry kernel may still miss merging surfaces that
may occupy the same space on adjacent volumes. If volumes in an assembly are not correctly merged, the subsequent
meshes generated on the volumes will not be conformal. As a result, it is vital that all merging issues be resolved prior to
meshing. The proposed environment provides a diagnostic and several solutions for addressing these issues.

381

CUBIT 11.0 User Documentation

Diagnostic: An overlapping surface check is performed to diagnose the failed sharing of topology between adjacent
volumes. In contrast to the misalignment check, the check for overlapping surfaces is performed after the imprinting and
merging operations. The overlapping surface check will measure the distance between surfaces on neighboring volumes
to ensure that they are greater than the merge tolerance apart. Pairs of surfaces that failed to merge and that are closer
than the merge tolerance are flagged and displayed to the user as potential problems.

Solutions: If imprinting and merging has been performed and a subsequent overlapping surface check finds overlapping
surface pairs, the user may be offered three different options for correcting the problem: force merge, tolerant imprint of
vertex locations and tolerant imprint of curves.

If the topology for both surfaces in the pair is identical, the force merge operation can generally be utilized. The merge
operation will remove one of the surface definitions in order to share a common surface between two adjacent volumes.
Normally this is done only after topology and geometry have been determined to be identical, however the force merge
will bypass the geometry criteria and perform the merge. Figure 2 shows a simple example where the bounding vertices
are identical but the surface definitions are slightly different so that the merge operation fails. Force merge in this case
would be an ideal choice.

surface A

Figure 2. Example where the merge operation will fail, but force merge will be successful

The force merge operation is presented as a solution where a pair of overlapping surfaces are detected and if any of the
following criteria are satisfied:

All curves of both surfaces are merged

All vertices between the two surfaces are merged and all the curves are coincident to within 1% of their length
or 0.005, whichever is larger

e All the curves of both surfaces are either merged or overlapping and a vertex of any curve of one surface that
will imprint onto any other curve of the other surface cannot be identified

® At least one curve of one surface may be imprinted onto the other and if both surfaces have an equal number of
curves and vertices, and the overlapping area between the 2 surfaces is more than 99% of the area of each
surface. This situation generally prevents generating sliver surfaces

® At least one vertex of surface B may be imprinted onto surface A, and if both surfaces have equal number of
curves and vertices, and the vertex(s) of surface B to imprint onto surface A lies too close to any vertices of
surface A

e All the curves of both surfaces are either merged or overlapping and no vertices of any curve of surface A will
imprint onto any other curve of surface B

Individual vertices may need to be imprinted in order to accomplish a successful merge. The solution of imprinting a
position x,y,z onto surface A or B is presented to the user if the following criteria is met

e Curves between the two surfaces overlap within tolerance, and a vertex of curve A lies within tolerance to curve
B and outside tolerance to any vertex of curve B. Tolerance is 0.5% of the length of the smaller of the 2 curves
or the merge tolerance (0.0005), whichever is greater.

382

CUBIT 11.0 User Documentation

—

gca g I curve forced
“' to imprint —_ l

Figure 3. Curve on surface A was not imprinted on surface B due to tolerance mismatch. Solution is defined to detect and
imprint the curve

In some cases one or more curves may not have been correctly imprinted onto an overlapping surface which may be
preventing merging. This may again be the result of a tolerance mismatch in the CAD translation. If this situation is
detected a tolerant imprint operation may be performed which will attempt to imprint the curve onto the adjacent volume.
Figure 3 shows an example where a curve on surface A is forced to imprint onto surface B using tolerant imprint, because
it did not imprint during normal imprinting. The solution of a curve of surface A to be imprinted onto surface B may be
presented to the user if all 3 of the following conditions are satisfied:

® There are no positions to imprint onto the owning volume of either surface
® Curve of surface A is not overlapping another curve of surface B
® Curve of surface A passes tests to ensure that it is really ON surface B

Building a Sweepable Topology

The hex meshing problem presents a number of additional challenges to the user that tetrahedral meshing does not.
Where a good quality tetrahedral mesh can generally be created once small features and imprint/merge problems have
been addressed, the hexahedral meshing problem poses additional topology constraints which must be met.

Although progress has been made in automating the hex meshing process, the most robust meshing algorithms still rely
on geometric primitives. Mapping [Cook, 82] and sub-mapping [Whiteley, 96] algorithms rely on parametric cubes and
sweeping[Knupp, 98; Scott, 05] relies on extrusions. Most real world geometries do not automatically fit into one of these
categories so the topology must be changed to match the criteria for one of these meshing schemes. ITEM addresses the
hex meshing topology problem through four primary diagnostic and solution mechanisms.

Detecting blend surfaces

Detecting and suggesting decomposition operations

Recognizing nearly sweepable topologies and suggesting source-target pairs
Detecting and compositing surfaces to force a sweep topology

N =

Blend Surfaces

Blend surfaces are common in solid model meshing problems. A blend surface, also known as a fillet or chamfer, is
problematic for sweeping algorithms which have trouble assigning vertex types on blend surfaces. While blend surfaces
present a challenge for meshing applications, there are many tools within ITEM to help guide the user through possible
solutions.

Diagnostic: Blend surfaces are detected by looping over the curves on a surface and examining the angles, surface
normals, and curvature of curves and adjacent surfaces.

Solutions: The current solution to blend surfaces is to remove the surface and attempt to extend adjacent surfaces to fill

in the gap. An example of blend surfaces that have been removed is shown below. This is useful for models which can be
simplified without losing important topology.

383

CUBIT 11.0 User Documentation

Figure 1. A volume which has been simplifed by removing blend surfaces.

Geometry Decomposition

Automatic decomposition has been researched and tools have been developed which have met with some limited
success [Lu,99 , Staten,05]. Automatic decomposition requires complex feature detection and sub-division algorithms.
The decomposition problem is at least on the same order of difficulty as the auto-hex meshing problem. Fully automatic
methods for quality hexahedral meshing have been under research and development for many years [Blacker,93
Folwell,98 , Price,95]. However, a method that can reliably generate hexahedral meshes for arbitrary volumes, without
user intervention and that will build meshes of an equivalent quality to mapping and sweeping technigues, has yet to be
realized. Although fully automatic techniques continue to progress [Staten,06], the objective of the proposed environment
is to reduce the amount of user intervention required while utilizing the tried and true mapping and sweeping techniques
as its underlying meshing engine.

Instead of trying to solve the all-hex meshing problem automatically, the ITEM approach to this problem is to maintain
user interaction. The ITEM algorithms determine possible decompositions and suggest these to the user. The user can
then make the decision as to whether a particular cut is actually useful. This process helps guide new users by
demonstrating the types of decompositions that may be useful. It also aids experienced users by reducing the amount of
time required to set up decomposition commands.

Diagnostics: The current diagnostic for determining whether a volume is mappable or sweepable is based upon the
autoscheme tool described in [White,00]. Given a volume, the autoscheme tool will determine if the topology will admit a
mapping, sub-mapping or sweeping meshing scheme. For volumes where a scheme cannot be adequately determined, a
set of decomposition solutions are generated and presented to the user.

Solutions: The current algorithm for determining possible cut locations is based on the algorithm outlined in [Lu,99] and is
described here for clarity:

Find all curves that form a dihedral angle less than an input value (currently 135°)
Build a graph of these curves to determine connectivity
Find all curves that form closed loops
For each closed loop:
0 Find the surfaces that bound the closed loop
O Save the surface
O Remove the curves in the closed loop from the processing list
® For each remaining curve:
O Find the open loops that terminates at a boundary
O For each open loop:
®" Find the surfaces that bound the open loop
" Save the surfaces
e For each saved surface:
O Create an extension of the surface
O Present the extended surface to the user as a possible decomposition location.

384

CUBIT 11.0 User Documentation

This relatively simple algorithm detects many cases that are useful in decomposing a volume. Future work will include
determining symmetry, sweep, and cylindrical core decompositions. These additional decomposition options should
increase the likelihood of properly decomposing a volume for hexahedral meshing.

Figure 1 shows an example scenario for using this tool. The simple model at the top is analyzed using the above
algorithm. This results in several different solutions being offered to the user, three of which are illustrated here. As each
of the options is selected, the extended cutting surface is displayed providing rapid feedback to the user as to the utility of
the given option. Note that all solutions may not result in a volume that is closer to being successfully hex-meshed.
Instead the system relies on some user understanding of the topology required for sweeping.

Each time a decomposition solution is selected and performed, additional volumes may be added, which will in turn be
analyzed by the autoscheme diagnostic tool. This interactive process continues until the volume is successfully
decomposed into a set of volumes which are recognized as either mappable or sweepable.

([
ey
==

¥\ . i |

i

Figure 1. ITEM decomposition tool shows 3 of the several solutions generated that can be selected to decompose the
model for hex meshing

Recognizing Nearly Sweepable Regions

The purpose of geometry operations such as decomposition is to transform an unmeshable region into one or more
meshable regions. However, even the operations suggested by the decomposition tool can degenerate into guesswork if
they are not performed with a specific purpose in mind. Without a geometric goal to work toward, it can be difficult to
recognize whether a particular operation will be useful.

Incorporated within the proposed ITEM environment are algorithms that are able to detect geometry that is nearly
sweepable, but which are not fully sweepable due to some geometric feature or due to incompatible constraints between
adjacent sections of geometry. By presenting potential sweeping configurations to the user, ITEM provides suggested
goals to work towards, enabling the user to make informed decisions while preparing geometry for meshing.

Unlike the decomposition solutions presented in the previous section, the purpose of recognizing nearly sweepable
regions is to show potential alternative source-target pairs for sweeping even when the autoscheme tool does not
recognize the topology as strictly sweepable. When combined with the decomposition solutions and the forced
sweepability capability described later, it provides the user with an additional powerful strategy for building a hexahedral
mesh topology.

Diagnostics: In recognizing nearly sweepable regions, the diagnostic tool employed is once again the autoscheme tool

described in [White, 00]. Volumes that do not meet the criteria defined for mapping or sweeping are presented to the user.
The user may then select from these volume for which potential source-target pairs are computed.

385

CUBIT 11.0 User Documentation

Solutions: The current algorithm for determining possible sweep configurations is an extension of the autoscheme
algorithm described in [White, 00]. Instead of rejecting a configuration which does not meet the required sweeping
constraints, the sweep suggestion algorithm ignores certain sweeping roadblocks until it has identified a nearly feasible
sweeping configuration. The suggestions are presented graphically, as seen in Figure 1. In most cases, the source-target
pairs presented by the sweep suggestion algorithm are not yet feasible for sweeping given the current topology. The user
may use this information for further decomposition or to apply solutions identified by the forced sweepability capability
described next. The sweep suggest algorithm also provides the user with alternative feasible sweep direction solutions as
shown in Figure 1. This is particularly useful when dealing with interconnected volumes where sweep directions are

dependent on neighboring volumes.

A
(b)

|

(a)

Figure 1. (a) ITEM displays the source and target of a geometry that is nearly sweepable. The region is not currently
sweepable due to circular imprints on the side of the cylinder. (b) Alternative feasible sweep directions are also
computued.

Forced Sweepability

In some cases, decomposition alone is not sufficient to provide the necessary topology for sweeping. The forced
sweepability capability attempts to force a model to have sweepable topology given a set of source and target surfaces.
The source-target pairs may have been identified manually by the user, or defined as one the solutions from the sweep
suggestion algorithm described above. All of the surfaces between source and target surfaces are referred to as linking
surfaces. Linking surfaces must be mappable or submappable in order for the sweeping algorithm to be successful. There
are various topology configurations that will prevent linking surfaces from being mappable or submappable.

Diagnostics: The first check that is made is for small curves. Small curves will not necessarily introduce topology that is
not mappable or submappable but will often enforce unneeded mesh resolution and will often degrade mesh quality as the
mesh size has to transition from small to large. Next, the interior angles of each surface are checked to see if they deviate
far from 90° multiples. As the deviation from 90° multiples increases the mapping and submapping algorithms have a
harder time classifying corners in the surface. If either of these checks identify potential problems they are flagged and
potential solutions are generated.

Solutions: If linking surface problems are identified ITEM will analyze the surface and generate potential solutions for
resolving the problem. Compositing the problem linking surface with one of its neighbors is a current solution that is
provided. ITEM will look at the neighboring surfaces to decide which combination will be best. When remedying bad
interior angles the new interior angles that would result after the composite are calculated in order to choose the
composite that would produce the best interior angles. Another criterion that is considered is the dihedral angle between
the composite candidates. Dihedral angles close to 180° are desirable. The suggested solutions are prioritized based on
these criteria before being presented to the user. Figure 1 shows an example of a model before and after running the
forced sweepability solutions. The top and bottom of the cylinder were chosen as the source and target surfaces
respectively.

386

CUBIT 11.0 User Documentation

Figure 1. Non-submappable linking surface topology is composited out to force a sweepable volume topology

Generating a Mesh in ITEM

The mesh generation panel in ITEM is different from the other panels in Cubit. Meshing errors can arise from a number of
different problems. Many of these problems are caused from improper geometry preparation/cleanup. Other problems can
be caused from improper interval settings, or meshing schemes. Instead of suggesting specific operations as it does on
other panels, the meshing panel in ITEM will suggest several possible solutions based on the error message output. Each
of these solutions may require significant user input, and may require you to revisit previous ITEM panels or Control
panels. To open the appropriate Control panel, you can right click on the solution and select "Show Command Panel". For
convenience, these general solutions are described here, including which ITEM panels and which Control panels they
refer to. References to help topics are also included.

387

CUBIT 11.0 User Documentation

| 8| @9 ¥
[me v

Eerrtale Mesh
Pl bt bk 4 e conient it obftings 10
peveriii e rerds

Earavali Meth

St eokimess bebom n enanene Hhode thal o not
mesh Enciy genersted duseg messhing for the
spbeched volime will b doplaesd belew

| Erily {Erity Dt |
e

- [Moot Machemd
o 1

Emaas
Eibois il Baind v Jusr a0 ol i srarng Bra

dubintine] wilievel of fuface Select arediol o
chply d st of pecnble sohaons:

Micthargg Evniaa
=Emor 13
Shippng resihing, sace s schene
O [l

‘ |- o
Solulinns

Prieitizsd sobsions dieplspsd maovids s poribls
shsbagy |or msobeing Fre seleciad Enoe. Flignt chick

oy & sohbion for reore inkoimson of o go lo s
e o st 1o e probiem

Colaptng sialacit, civit, &
snglas 10 o urmeccchany delsl:
may iesohe the problan

Composarg sstace: or aves ln

[Poasible Gobubons j
[

Figure 1. ITEM Mesh Panel

ITEM Meshing Suggestions

388

The volume is not decomposed enough. It may need to be webcut.

Diagnostic: This solution message appears when auto scheme selection fails. There are many reasons that
auto scheme selection may have failed. Check to make sure that your volume is broken up into meshable parts.
For sweepable volumes, this means that each volume should only have one target surface.

Action: Right-clicking on this solution and selecting the "Show command panel" option will open the webcutting
commands on the control panel. Alternatively, you can also return to the ITEM decomposition panel for more
webcutting suggestions.

Help Topics:

Geometry Decomposition explains diagnostics and solutions on the ITEM decomposition panel

Decomposition Tutorial has several webcutting tips and examples.

Web Cutting Documentation contains all of the syntax for webcutting commands in Cubit.

Meshing schemes may need to be manually set.

Diagnostic: This solution message appears when auto scheme selection fails, interval matching fails, or
interval assignments fail. Setting the schemes manually may help resolve some of these issues. It may also
help to set source and target surfaces explicitly for swept meshes.

CUBIT 11.0 User Documentation

Action: The volume schemes can be set explicitly from the Volume-Mesh control panel. The "Set Source and
Target" panel in ITEM can be used to aid in setting explicit source and target surfaces for swept meshes.
Help Topics:

Recognizing Nearly Sweepable Regions explains how ITEM might be used to recongize nearly sweepable
regions.

Meshing the Geometry has some suggestions for getting difficult geometry to mesh.

Decomposition Tutorial has several examples where the meshing schemes have to be set manually.

Meshing Schemes gives an overview of all of the meshing schemes in Cubit.

The mesh size or number of intervals on a volume may need to be changed.

Diagnostic: This solution message appears for many reasons: auto scheme selection fails, interval matching
fails, interval assignments fail, inconsistent edge-face ratios, odd number of intervals on a paver loop, or
connectivity problems. Setting explicit intervals may be necessary

Action: The volume mesh intervals can be set explicitly from the Volume-Interval control panel. The "Set
Element Sizes" panel in ITEM can be used to aid in setting explicit sizes and sizing functions for meshes.
Help Topics:

Interval Assignment has links to different interval assignment methods in Cubit

Bias, Dualbias describes how to create a biased mesh and Controlling Mesh Quality describes how to
propagate a curve bias.

Decomposition Tutorial has several examples where the meshing intervals are set manually.

Mesh Adaptivity and Sizing Functions describes how to use sizing functions in Cubit.

Compositing surfaces or curves to remove unneccessary details may resolve the problem.

Diagnostic: This solution message appears when auto-scheme selection fails. A model may contain small
curves or surfaces that need to be composited with adjacent surfaces. Or it may just contain more detail than is
needed for analysis. Compositing surfaces and curves does not affect the underlying geometry.

Action: The Remove Small Features or Force Sweep Topology panels in ITEM may suggest several possible
candidates for compositing.The Surface-Modify-Composite or the Curve-Modify-Composite panels can be used
to composite surfaces or curves respectively. These panels are also used to delete virtual geometry from
curves or surfaces.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.

Forced Sweepability describes using ITEM to force sweepability using virtual geometry.

Composite Curves explains how to composite curves in Cubit.

Composite Surfaces explains how to composite surfaces in Cubit.

Decomposition Tutorial Example 8 has an example of using composite curves to improve meshability.

Power Tools Tutorial has another example of using composite geometry.

Collapsing surfaces, curves, or angles to remove unneccessary details may resolve the problem.

Diagnostic: This solution message appears when auto-scheme selection fails. Collapsing a surface involves
splitting a surface, and compositing it with adjacent surfaces.

Action: The Remove Small Features panel in ITEM may suggest several possible candidates for collapse. The
Surface-Modify-Collapse, Curve-Modify-Collapse, or Vertex-Modify-Collapse Angle panels can also be used to
collapse surfaces, curves, or angles respectively.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.

Collapse Angle explains how to collapse angles in Cubit.

Collapse Curves explains how to collapse curves in Cubit.

Collapse Surfaces explains how to collapse surfaces in Cubit.

Removing unneccessary surfaces or curves to simplify geometry may improve the chances that a
volume will mesh.

Diagnostic: This solution message appears when auto-scheme selection fails. Removing unnecessary
surfaces may improve meshability.

389

CUBIT 11.0 User Documentation

Action: The Remove Small Features panel in ITEM may suggest several possible candidates for removal. The
Surface-Modify-Tweak panel, Surface-Modify-Remove panel, Curve-Modify-Tweak or the Volume-Modify-
Remove Slivers panels are also used to remove unnecessary features in a model.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and narrow features in your
model.

Removing Geometric Features describes the syntax for removing unneeded surfaces and vertices, including
sliver surfaces.

Tweaking Geometry contains the syntax for tweaking surfaces, curves, and vertices.

Power Tools Tutorial has an example of using the tweak surface command to simplify a model.

7. Smoothing the mesh may improve the mesh quality.

Diagnostic: This solution message appears when mesh generation creates poor quality elements, particularly if
it creates inverted or "negative Jacobian" elements. In some cases, smoothing a mesh may get rid of these bad
elements.

Action: Depending on the geometry type, the smoothing panel can be accessed from the Control panel under
Volume-Smooth or Surface-Smooth panels. It is also helpful to use the Validate Mesh page in ITEM for
assessing quality metrics.

Help Topics:

Mesh Smoothing describes the different smoothing schemes in Cubit and how to use them.

Mesh Validation describes how to use quality metrics in ITEM and gives suggestions on smoothing schemes to
try.

Mesh Quality Assessment describes the different quality metrics in Cubit and how to use them.

8. Deleting the mesh on an entity in order to further decompose or modify it may be necessary.

Diagnostic: This solution message appears when mesh generation creates a poor quality mesh, due to
negative Jacobians, inconsistent edge-face ratios, connectivity problems, or any other invalid mesh
configuration. Mesh generation can be a very iterative process. It is sometimes necessary to delete a mesh and
try different schemes, sizes, or even just change the meshing order. Sometimes you must further decompose or
modify your geometry to get it to mesh.

Action:To delete a mesh, you can select it in the graphics window and choose Delete Mesh from the right-click
context menu. You can also delete a mesh from any of the Mesh-Entity-Delete panels on the Control Panel.
Help Topics:

Mesh Deletion describes command line syntax for deleting a mesh.

9. Changing vertex types may make the surface or volume meshable.

Diagnostic: This solution message appears when mesh generation fails to assign valid vertex types on
mapped or submapped surfaces.

Action:To change the vertex type on a surface, select the Surface-Mesh-Submap-Advanced or Surface-Mesh-
Map-Advanced panels. From here you can assign and view vertex types.

Help Topics:

Surface Vertex Types describes how to change the vertex types on a geometry.

Validating the Mesh in ITEM

Advancements in the mesh generation algorithms have significantly reduced the amount of quality problems seen in the
initially generated mesh. Further, ITEM generally relies on the most robust meshing algorithms available in CUBIT,
specifically sweeping for hexahedral mesh generation (Scott,05) and the Tetmesh-GHS3D (George,91) meshing software
(See http://www.distene.com). However, some problems can still exist, and therefore ITEM has integrated quality
diagnostics and solution options.

Diagnostics: After the mesh has been generated, the user may choose to perform element quality checks. ITEM utilizes
the Verdict (Stimpson,07) library where a large number of mesh quality metrics have been defined and available as a
modular library. If no user preference is specified, ITEM uses the Scaled Jacobian distortion metric to determine element
quality. This check will warn users of any elements that are below a default or user-specified threshold, allowing various
visualization options for displaying element quality.

390

CUBIT 11.0 User Documentation

Solutions: If the current element quality is unacceptable, ITEM will present several possible mesh improvement solutions.
The most promising solutions are provided through ITEM's interface to two smoothers: mean ratio optimization and
Laplacian smoothing. These are provided as part of the Mesquite (Brewer,03) mesh quality improvement tool built within
CUBIT. The user has the option of performing these improvements on the entire mesh, subsets of the mesh defined by
the element quality groups, or on individual elements. The Laplacian smoothing scheme allows the users to smooth just
the interior nodes or to simultaneously smooth both the interior and boundary nodes in an attempt to improve surface
element quality.

391

CUBIT 11.0 User Documentation

Step-By-Step Tutorials

The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite element mesh generation as well as
provide a brief tutorial on the use of the software package. This chapter is designed to demonstrate step-by-step
instructions for generating a simple mesh on a perforated brick.

The following activity demonstrates the basics of using CUBIT to generate and mesh a geometry. By following these
steps, you will become familiar with the basics of the command-line and GUI interfaces without stopping for detailed
explanations. All the commands introduced in this tutorial are documented in subsequent chapters on this manual.

Here are a few tips for the examples in the tutorial:

® Focus on the instructions preceded with "Step" numbers. These walk you through a series of explicit activities
that describe how to complete the task.

o Refer to the screen shots and other pictures that show what you should see on your own monitor as you
progress through the tutorial.

e |n this tutorial, command line options will look like this:

cubit> <Your commands go here>

If you do not have the Graphical User Interface (GUI) version of CUBIT, follow the steps in the right column below,
otherwise, proceed through the steps on the left:

GUI CL

Overview Overview

Step 1 Step 1 Beginning Execution

Step 2 Step 2 Creating the Brick

Step 3 Step 3 Creating the Cylinder

Step 4 Step 4 Adjusting the Graphics Display
Step 5 Step 5 Forming the Hole

Step 6 Step 6 Setting Interval Sizes

Step 7 Step 7 Surface Meshing

Step 8 Step 8 Volume Meshing

Step 9 Step 9 Inspecting the Model

Step 10 Step 10 Defining Boundary Conditions
Step 11 Step 11 Exporting the Mesh

Additional Tutorials

Power Tools GUI Tutorial - A tutorial on geometry decomposition and cleanup using the Power Tools on the new CUBIT
GUI.

Decomposition Tutorial - A series of webcutting hints and suggestions for creating sweepable volumes on various models.

392

CUBIT 11.0 User Documentation

Geometry Cleanup Process Flow - A flowchart on geometry cleanup and defeaturing.

Command Line Basic Tutorial

Overview

This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-hole. The primary steps in
performing this task are:

Creating the geometry

Setting the interval sizes and meshing schemes
Meshing the geometry

Specifying the boundary conditions

Exporting the mesh

Each of these steps is described in detail in the following sections. The geometry in this tutorial is a brick with a cylindrical
hole in the center, shown in the figure below. This figure also shows the curve and surface identification (ID) numbers,
which are referenced in the command lines shown with each step. The final meshed body is shown in the next figure.

Surface Labels

Curve Lahels

Geometry for Cube with Cylindrical Hole

393

CUBIT 11.0 User Documentation

Generated Mesh for Cube with Cylindrical Hole

<l

e P el P |

Command Line Basic Tutorial

Step 1: Beginning Execution

Type "cubit" from a UNIX prompt to begin execution of CUBIT. A CUBIT console window will appear which tells the user
which CUBIT version is being run and the most recent revision date. An example of the UNIX output window is shown
below. This window echoes the commands and relays information about the success or failure of attempted actions.

394

CUBIT 11.0 User Documentation

WProgram Files\Cubit 10, 2Wbineubits. s

CHuild 26H8>

is "G 4 it 18.: i it¥l .cub’

Uendoe: t Corporation
Generic

i.1.@

How in Vo lume picking mode.

CUBLT >

Some things to notice are:

e Atthe top of the CUBIT window you will be told where the commands entered in this CUBIT session will be
journaled. For example: "Commands will be journaled to “cubitO1.jou’ for this example.

e |n addition to the CUBIT version, the code also reports the versions of ACIS and VTK that have been compiled
into CUBIT.

The command line prompt appears after the banner screen, and appears as "CUBIT>".
Commands are entered at that prompt, followed by the "Enter" key.

e Upon startup, a graphics window should also appear, with an axis triad in the lower left hand corner (this
window will not appear if CUBIT is started with the -nographics option.)

{ |

| P

—_—

Command Line Basic Tutorial

Step 2: Beginning Execution
Now you may begin generating the geometry to be meshed. You will create a brick of width 10, depth 10 and height 10.
The width and depth correspond to the x and y dimensions of the object being created. The "width" or x-dimension is
screen-horizontal and the "depth" or y-dimension is screen-vertical. The height or z-dimension is out of the screen. The
command to create this object is:

cubit> create brick width 10 depth 10 height 10 (OR)

cubit> create brick x 10

The cube should appear in your display window as shown below:

395

CUBIT 11.0 User Documentation

Bl Cubit 10.2b (1) [C:\Program Files\Cubit Betaibinicubit01.cub] E]

Display of Brick

<l

e P el P |

Command Line Basic Tutorial

Step 3: Creating the Cylinder
Now you must form the cylinder which will be used to cut the hole from the brick. This is accomplished with the command:
cubit> create cylinder height 12 radius 3

At this point you will see both a brick and a cylinder appear in the CUBIT display window, as shown below:

396

CUBIT 11.0 User Documentation

B Cubit 10.2b (1) [C:¥Program Files\Cubit Beta\binicubito1.cub] [= |85

Brick and Cylinder

“l»

|
i

Command Line Basic Tutorial

Step 4: Adjusting the Graphics Display
The geometry is drawn in the graphics display in perspective mode by default from a viewing direction of the +z axis. This

view can now be adjusted to verify the proper orientation of the geometry just created. The orientation of the geometry
can be adjusted using the command line or interactively with the mouse.

Command Line

You can adjust the orientation of the object from the command line. For example, the from command can be used as
follows

cubit>from 20 15 25

cubit>display

397

CUBIT 11.0 User Documentation

Mouse

To_interactively change the orientation, activate your graphics window by placing your cursor in the window or by clicking
at the top of it (this will vary depending upon your window settings in your operating system).

e Use the left mouse button to interactively rotate the view
e Use the middle mouse button to zoom in or out
e Use the right mouse button to pan the view.

Use the mouse buttons to make the display look the figure below:

View from a Different Perspective

<l

e P el P |

398

CUBIT 11.0 User Documentation

Command Line Basic Tutorial

Step 5: Forming the Hole
Now, the cylinder can be subtracted from the brick to form the hole in the block. Issue the following command:
cubit> subtract 2 from 1

Note that both original volumes are deleted in the Boolean operation and replaced with a new volume (with an id of 1)
which is the result of the Boolean operation Subtract .

The result of this operation is a single body, a brick with a hole through as shown below:

M Cubit 10.2b (1) [C:\Program Files\Cubit Betatbin\cubitod.cub] [][]0

Brick after Subtracting the Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

<l p

i d P ol P |

399

CUBIT 11.0 User Documentation

Command Line Basic Tutorial

Step 6: Setting Interval Sizes

The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side of the brick to the other. Before
generating any mesh, the user must specify the size of the elements to be generated. In this example, one element size
will be specified for the volume as a whole and a smaller size will be specified for around the hole. A direct interval setting
will be specified for the sweep direction.

To set the interval size for the overall volume, enter the command
cubit> volume 1 size 1.0

Since the brick is 10 units in length on a side, this specifies that each straight curve is to receive approximately 10 mesh
elements.

In order to better resolve the hole in the middle of the top surface, we set a smaller size for the curve bounding this hole.
To find the id number of the curve bounding the hole, the user can either pick the curve (See Selecting Entities with the
Mouse) or turn curve labels on and regenerate the view. To do the latter, use the command

cubit> label curve on
cubit> display

The default size of the labels can sometimes be too small to read. To change the text size, use the graphics text size
command:

cubit> graphics text size 2
cubit>display

The result is shown in the figure below. Then the interval size can be set for the appropriate curve:

400

CUBIT 11.0 User Documentation

M Cubit 10.2b (1) [C:¥Program Files¥Cubit Betaibinicubit01.cub] E|@

Geometry with Curve Labeling Turned on
cubit> curve 15 interval size 0.5

Finally, we would like to generate exactly 5 element layers in the sweep direction. This is accomplished by setting the
intervals on curve 11:

cubit> curve 11 interval 5

Command Line Basic Tutorial

Step 7: Surface Meshing
Now that all the necessary intervals have been set, the meshing can proceed. Begin by meshing the front surface (with
the hole) using the paving algorithm. This is done in two steps. First, set the scheme for that surface to Pave; then, issue

the command to Mesh. Since the surface to be paved is number 11, issue the command:

cubit> surface 11 scheme pave

401

CUBIT 11.0 User Documentation

With the meshing scheme specified, we proceed to mesh the surface:
cubit> mesh surface 11
cubit>display

The results are shown below:

B Cubit 10. 2b (1) [C:\Program Files\Cubit Betakbinicuhbit01.cub] E”EJ .'

Surface Meshed with Paving

<l p

i d P ol P |

Command Line Basic Tutorial

Step 8: Surface Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of meshing scheme to be used and
the second step is to issue the order to mesh. In certain cases, the scheme can be determined by CUBIT automatically.
For sweepable volumes, the automatic scheme detection algorithm also identifies the source and target surfaces of the
sweep automatically.

402

CUBIT 11.0 User Documentation

To instruct the code to automatically determine the meshing scheme and in this case the source and target surfaces,

enter the command:
cubit> volume 1 scheme auto
To view the results of auto scheme selection, certain data about the volume can be listed:

cubit> list volume 1

The results of this command are shown below; note that the scheme, and in this case the source and target surfaces, are

reported toward the top of the list output.

smpoth Sc
heme: equipotential

none

].J. ET Vv 1|.|.I

Output from Listing Volume 1
With the scheme set, the mesh command may be given:
cubit>mesh volume 1

The final meshed body will appear in the display window, as shown below:

B

403

CUBIT 11.0 User Documentation

M Cubit 10.2b (1) [C:\Program Files\Cubit Betaibin\cubit01.cub] = |[B] 5

View of Volume Mesh

<l p

i d P ol P |

Command Line Basic Tutorial

Step 9: Inspecting the Model

The type, quality, and speed of rendering the image can be controlled in CUBIT by using several graphics mode
commands, such as Wire Frame, Hidden Line, Transparent and Smooth Shade. For example:

cubit> graphics mode wireframe

The wire frame display is illustrated below:

404

CUBIT 11.0 User Documentation

M Cubit 10.2b (1) [C:\Program Files\Cubit Betatbinicubitod.cub] (= |[8]5)

Wire Frame View of Mesh
Next, try:
cubit> graphics mode hiddenline

The hidden line display is illustrated below:

405

CUBIT 11.0 User Documentation

M Cubit 10.2b (1) [C:\Program FilesiCubit Betatbinicubitod.cub] (= |[8]5

Hidden Line View of Mesh
Next, try:
cubit> graphics mode transparent

The transparent display is shown below.

406

CUBIT 11.0 User Documentation

B Cubit 10.2b (1) [C:¥Program FilesyCubit Betatbintcuhit01.cuhb] g@]:g'

Transparent View of Mesh
Next, try:
cubit> graphics mode smoothshade

The smooth shade display is shown below. For detailed information on the viewing mode options, See Graphics Modes.

407

CUBIT 11.0 User Documentation

Smooth Shade View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh and warns the user about certain
cases of bad quality, it is still a good idea to inspect a broader set of quality measures. To do this, enter the command:

cubit> quality volume 1

The results of the quality output are shown below. For an explanation of quality metrics along with acceptable ranges, see
Mesh Quality Assessment. For the purposes of this tutorial, you can assume the quality metrics shown below are in an

acceptable range.

C:\Program Files\Cubit 10. 2\bin\cubitc.exs

CUBIT?> guality vol 1

o lume 1 Hex guality,. 358 elements:

Function Hame Average Std Dew Hinimum

Shape ?.18Be—10R ? . 6dbe—B0H2 4.651e-B81 <(E

Quality Table from Volume 1's Hex Mesh

408

CUBIT 11.0 User Documentation

<! p|

Command Line Basic Tutorial

Step 10: Defining Boundary Conditions

Let us assume that we need to define one material type for the entire mesh, and a single node-based boundary condition
on all surfaces. This is accomplished by identifying an Element Block and a Nodeset, respectively; the id numbers
assigned to these entities are assigned by the user, usually by some convention meaningful to the analysis to be done.
The element block and nodeset are identified using the commands:

cubit> block 100 volume 1

cubit>nodeset 100 surface all in volume 1
{ {
. 48
Command Line Basic Tutorial

Step 11: Exporting the Mesh

Finally, the mesh needs to be written to an Exodusll file. This is easily done:
cubit> export genesis “brick_with_hole.g"

The filename and extension are arbitrary and, like the block and nodeset numbers, are usually named according to a
convention meaningful to the analysis.
|
i P
it ot LT A

GUI Basic Tutorial

Overview

This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-hole. The primary steps in
performing this task are:

Creating the geometry

Setting the interval sizes and meshing schemes
Meshing the geometry

Specifying the boundary conditions

Exporting the mesh

The geometry for this tutorial is a brick with a cylindrical hole in the center, shown in the figure below. This figure also
shows the curve and surface identification (ID) numbers, which are referenced in the command lines options shown with
each step. The final meshed body is shown in the next figure.

409

CUBIT 11.0 User Documentation

Curve Lahels Surface Labels

Geometry for Brick with Cylindrical Hole

Generated Mesh for Brick with Cylindrical Hole

<\ p

—_—

410

CUBIT 11.0 User Documentation

GUI Basic Tutorial

Step 1: Beginning Execution

Type "cubit" from a UNIX prompt or select cubit from the start menu if you are running on a PC with Windows. The

CUBIT Application Window will appear as illustrated below:

- Drop Down Menus

Fin Bt Vs Deploy Cook el
bEE MEEb Fan FITP9FAPELEAGSEEN S8 ep s+ 0L B
“i | & (@9 W] T g
| Tk Dancristen o foaibars " a!;‘a—i m W|
| Feiip Vidiwe
Comae g sy cdersend &
S v L S JEaRal")
= cargheing fal dep At [f
[p— i | !E!ﬁ:g
" . ; [#i 1
R Graphics Window o ot e
Huih the wemniiy = =
Ullain the: st A .
Dlivs kil ¢ ot Hiwati [
(B Pt
Power e
2 Tools 4]
o 1S e LM W
v W shim i 11EM
Command
T Panels
Pl At SERITs
SEAE: (EE]
E"wﬂ [¥e Command Line
IFmpenies Page
| | Comvmad A Epw A o 5
Wl DeaTory C JIOrUeen Wl S I S My O e el ey ﬂ

CUBIT Application Window

The use of each window in the CUBIT program is described briefly below

Graphics The current model will be displayed here. Zooming, panning, and rotating are also
Window performed in this window.
Drop Down Functions such as file management, edit controls, display options, user preferences,
Menpus journal file management, window manipulation, and help are available in the pull-down
menus.
This is a large selection of selectable icons that duplicate the functions found in the
Toolbars pull-down menus. Additionally, picking types, and mouse selection controls are found
here.
Power Tools The Power Tools contains the ITEM workflow, the geometry tree, geometry repair
power tools, meshing power tools, and mesh quality power tools.
Command The command line workspace contains both the cubit command, error, history, and
Line script windows. The command window is used to enter cubit commands and view the
Workspace output. The error window is used to view cubit errors. The history window is used to

view recent commands. The optional script window is used for Python programming.

411

CUBIT 11.0 User Documentation

Command Most Cubit commands are available in the command panels. The panel is organized

Panels topologically, by mode.

Properties This is a list of properties of the selected geometry, mesh, boundary condition, or

Page assembly. Some of the properties can also be edited from this window.
.’.!.l.’.’.'.l

GUI Basic Tutorial

Step 2: Creating the Brick

Now you may begin generating the geometry to be meshed. You will create a brick of width 10, depth 10 and height 10.
The width and depth correspond to the x and y dimensions of the object being created. The "width" or x-dimension is
screen-horizontal and the "depth” or y-dimension is screen-vertical. The height or z-dimension is out of the screen.

e Onthe Command Panel, select Geometry, then Volume, then Create. Brick is the default type.

Control Panel x|

— Mode - Geomety

Y E
=

E'ﬂit'l,l;";"nlume
S o
:.m.t}eaie
= KBRS
LIRIE: |
fmm R

Erick Dimensions
¥ [width] [10
¥ [height) |
Z [depth) |

@ Apply

e Enter values for X, Y, and Z. Note, X (width) has a default value of 10. Select Apply to create the brick.

The brick should appear in your Graphics window as shown below.

412

CUBIT 11.0 User Documentation

Display of Brick

If you would like to change the rendering mode of your model, you may click on one of the view buttons in the Display
Tools tool bar.

it e . Tngglﬁﬂgséspective
Turnon COperation GD'SF”E?’ Bisplay R
i : eametry
Chaaiﬁfmt Display Enttics Mesh In Zoom EDQFE
Modes cale
{ . g R of 7 _~0out 2

Display Tools

Pe FTTIFIIRLAIEL22RQ § HE i

Wireframe"/ | / \ %
Made Transparent Show Redraw Auto

Dotted Mode Composites the Center 3, Gy o=
: : - oose Defau

Hidden - Hidden golid Smaath Dishey Selection Mode
Line Line Shading

Mode mode Mode

413

CUBIT 11.0 User Documentation

GUI Basic Tutorial
Step 3: Creating the Cylinder

Now you must form the cylinder which will be used to cut a hole in the brick.

® Select Cylinder from the Create combo box.

Mode - G.él:-ni'ﬁetry" :

3 9AUEC
/

.---E.r-{t.itj,I alurme

3o

— Action - Create

a =

£

i=| |

Height |
fo Cincular " Elliptical

R adiuz i

;@| Apply

e Enter 12 for the height and 3 for the radius. Then select Apply.

The brick and the cylinder should appear in your display window as shown below:

414

CUBIT 11.0 User Documentation

Brick and Cylinder

GUI Basic Tutorial
Step 4: Adjusting the Graphics Display

The geometry is drawn in the graphics window in perspective mode, by default from a viewing direction of the +z axis.
This view can now be adjusted to verify the proper orientation of the geometry just created.

The following button clicks apply for 3-button mice (these are the default GUI settings):

e |eft will pick when the mouse is over an entity. Left click will also pan when held down.
e middle will rotate
e right will show a context menu when an entity is selected. Right click will zoom when no entity is selected.

Mouse button behavior can be customized from the Tools-Options menu for use with non 3-button mice.

Use the mouse buttons to make the display look like the figure below.

415

CUBIT 11.0 User Documentation

View from Different Perspective

<p

piciia fli sk |

GUI Basic Tutorial

Step 5: Forming the Hole

Now the cylinder can be subtracted from the brick to form the hole in the block.

(] Select the Boolean action button. Then select Subtract from the Boolean combo box.

416

CUBIT 11.0 User Documentation

Enitity - Yalume

Qu
¢
~

(2

Action - Boolean

moAE s e =R
E| @ X

YWiolume |0z l AN AR A

From Yolume 1D[z] |

I Eeep Originals

ﬂ Apply

e Enter 2 for Subtract Volume ID(s) and 1 for From Volume ID(s).
® Select the Apply button

You can also select the brick or cylinder interactively. Place the cursor in the Subtract Volume ID(s) field and click. This
field is known as a Pick Widget. Clicking in a pick widget automatically sets the graphics pick mode for the entity type
expected by the pick widget. Move the cursor to the graphics window and, using the left mouse button, select an entity.
The id of the selected entity will be echoed into the pick widget field. Holding the control key while selecting entities in the
graphics window will select multiple entities.

Notice that both original volumes are deleted in the Boolean operation and replaced with a new volume, with an id of 1.
The result of this operation is a single volume, a brick with a hole through it, as shown below.

417

CUBIT 11.0 User Documentation

Brick after Subtracting Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

<l p

i d P ol P |

GUI Basic Tutorial

Step 6: Setting Interval Sizes

The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side of the brick to the other. Before
generating any mesh, the user must specify the size of the elements to be generated. In this example, one element size
will be specified for the volume as a whole and a smaller size will be specified for around the hole. A direct interval setting
will be specified for the sweep direction.

To set the interval size for the overall volume, do the following:

® Change the mode to Meshing, then select Volume followed by Intervals.

418

CUBIT 11.0 User Documentation

tade - Meshing

3

—]

D

E ity - Y olume

T

<

"“H.

e
r
H

Achian -

Interyal

%

¥

P2 @ R

00

Select Yolumes

| Carstant Size

Size |

F;‘" Check Far Overlapping Sl:,irfE.IE;E:S.

2|

Previgm ‘ Apply

Mesh

e Place the cursor into the Select Volumes field. Since this is a pick widget, click anywhere on the volume in the
graphics window. Alternatively, type 1 in the field. Set the Interval Size to 1.0 and select Apply Size

Since the brick is 10 units in length on a side, this specifies that each straight curve is to receive approximately 10 mesh

elements.

In order to better resolve the hole in the middle of the top surface, we set a smaller size for the curve bounding this hole.

e Change the object of the command panel to curve by selecting Curve from the Entity buttons and Mesh from

the Action Buttons.

Note: There is not a separate interval action panel for curves. The interval and mesh actions for curves are grouped

together in one panel.

419

CUBIT 11.0 User Documentation

—Mode - Mezhing
a9
Entity - Curve -
@ - f" e
AR E={ PN
—oction - Mezh
o
= BEET

—Select Curves- - -

|
| E qual :j

f» Size i Interval © Auta

(6 ||

L
b

Size]

[v Owveride Previous Interval Settings

_@ Apply Size
Scheme: b ezh

® Place the cursor into the Select Curves pick widget field. Select the near end of the cylinder in the graphics
window. Once you have selected the curve, the id of that curve, 15 should appear in the Selected Curves field.

Select Size
e Enter 0.5 for the size and select Apply Size.

Finally, we would like to generate exactly 5 element layers in the sweep direction. This is accomplished by setting the
intervals on one of the curves in the sweep direction.

(] Place the cursor back into the Selected Curves field and enter 11.

e Select the Interval radio button
e Enter an interval count of 5 and select Apply.

420

CUBIT 11.0 User Documentation

—Mode - Meshing

N ETERE

T rl'u-tit_l,; - Curve-

$¢7 . @
2| "lA]~[+

e P @ R

&
as
P

&

" Size i+ |nterval Y [

|ikereal 1 3:

v Ovemide Previous Interval Seftings

@ Apply Size

Scheme: Mesh

b 11

GUI Basic Tutorial
Step 7: Surface Meshing

Now all necessary intervals have been set, the meshing can proceed. Begin by meshing the front surface (with the hole)

using the paving algorithm. This is done in two steps. First, set the scheme for that surface to Pave, then issue the
command to Mesh.

e Select Surface then Mesh buttons in the Control Panel.
(] Select Pave in the Available Mesh Schemes combo box.

421

CUBIT 11.0 User Documentation

—Mode - Meshing

3@ o

=T nitity - Surface

Pe
S IR

—Action - Mesh
| ?
o | G | [

(Select Entities ta Mesh

=X | |HS
3

[T Advanced

@ Apply Scheme

v Check Far DOverlapping Surfaces

Scheme: Default kesh

Place the cursor into the Surface ID(s) field. Select the front surface of the object by selecting anywhere within the region
indicated. The id of Surface 11 will be echoed in the field.

422

CUBIT 11.0 User Documentation

e Select the Apply button to set the scheme.
e Select the Mesh button to mesh the surface.

A mesh should be generated on surface 11 using the paving algorithm. The result is shown below.

423

CUBIT 11.0 User Documentation

Surface Meshed with Paving

<\ p

—_—

GUI Basic Tutorial

Step 8: Volume Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of meshing scheme that should be
used and the second step is to issue the order to mesh. In certain cases, the scheme can be determined by CUBIT
automatically. For sweepable volumes, the automatic scheme detection algorithm also identifies the source and target
surfaces of the sweep automatically.

To instruct the code to automatically determine the meshing scheme, and in this case the source and target surfaces, do
the following:

® Select Volume then Mesh on the control panel.

424

CUBIT 11.0 User Documentation

Mode - Meshing

393 HE
r
|
2

P e
51| <

Achion - Mesh

W

P

o

wi
5

—Select Entities to Mesh

i

Select Mezhing Scheme
| Automatically Calculate j
[Advanced

@ Apply Scheme

[v Check For Overlapping Surfaces

+
oo

)

Scheme: kezh

® Place the cursor into the Volume ID(s) field then select the volume in the Graphics Window. The id of Volume
1 should appear in the field. Choose the Automatically Calculate scheme using the combo box provided.

® Select Apply Scheme to set the scheme. Then select Mesh to mesh the volume.

425

CUBIT 11.0 User Documentation

The final meshed body will appear in the Graphics Window, as shown below:

Smooth Shade View of Volume Mesh

<ip

pi-fra bl ire |

GUI Basic Tutorial

Step 9: Inspecting the Model

The type, quality, and speed of rendering the image can be controlled in CUBIT by selecting one of the buttons in the
Display icon group. These icons appear by default in the icon bar above the graphics window. They can be used to
change the display mode to wire frame, hidden line, true hidden line, transparent or smooth shade.

426

CUBIT 11.0 User Documentation

it i . Tngglﬁﬂgde‘gspective
Turnon Operation GD|5pIat3f Display Zoom
- . eametry
ChaﬁﬁfMt Display Enfities Mesh In znnwuy/ gﬂgﬁm
Modes cale
{ o g O of Ao 2%

Display Tools *H

P SYTIIIOE LSRRG HE L
Wirlfnfrdaeme”/ /Transplmarent Shiow / Rédraw -"J\UTE: /

Dotted Mode Composites the Center & G o=
- : i oose Defau

Hidden Hidden golid Smooth Bispley Selection Mode
Line Line Shading

Mode mode Mode

For example, the following two figures result from selecting the Hidden Line and Wire Frame Mode buttons respectively.

Hidden Line View of Mesh

427

CUBIT 11.0 User Documentation

Wire Frame View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh and warns the user about certain
cases of bad quality, it is still a good idea to inspect a broader set of quality measures. To do this, use the Command
Window to enter the command:

CUBIT> quality volume 1 Allmetrics
The results of the quality are displayed in the Command Window. For an explanation of each quality metric along with

acceptable ranges, see Mesh Quality Assessment. For the purposes of this tutorial, you can assume the quality metrics
shown are in an acceptable range.

<!

pi-fra bl ire |

GUI Basic Tutorial
Step 10: Defining Boundary Conditions

Let us assume that we need to define one material type for the entire mesh, and a single node-based boundary condition
on all surfaces. This accomplished by identifying an Element Block and a Nodeset, respectively; the id numbers assigned
to these entities are assigned by the user, usually by some convention meaningful to the analysis to be done. The
element block and nodeset are identified from the Materials and Properties button on the control panel.

Select the Materials and Properties button and then Blocks in the Control Panel window

Select Add in the combo box

Enter a Block ID of 100

Select the Volume radio button

Enter the id of Volume 1 by selecting it in the graphics window, or just manually entering in 1D(s) field
Press Apply

428

CUBIT 11.0 User Documentation

— Mode - Materials and BC:-

390

e %

| Add -

Block 1D |1

—Select -

f+ Group = Tet

™ Walurme " Face
™ Surface £ T

™ Curve ~ Edage
" erten " Mode
" Hex

Dz |

[~ Reset sl Blocks Reset
_@ Apply

Create a nodeset by following the steps below

Open the Nodeset window on the Control Panel

Select Add from the combo box

Enter a Nodeset id of 100

Select the Surface radio button and type all in the ID(s) field
Press Apply

429

CUBIT 11.0 User Documentation

tode - b atenialz and BC=

392D

-Entity - Modeset

SHe ®

| &dd |

NodeSet D |1

Select -

* “ertex " Surface
" Mode " Wolume
" Curve £ Group
IDis) |

[FReset All ModeSets Reset |
_@ Apply

I
ROSELS
|
|
=

GUI Basic Tutorial

Step 11: Exporting the Mesh

Finally, the mesh needs to be written to an Exodus Il file. This is easily done:

® From the File menu, select Export.
Set the file export type to Genesis Files from file type combo box.

Enter a file name in the dialog, such as brick_with_hole.g, and select Save. Since this is a standard file
management dialog, the user may browse or use any other file management functionality supported by the
platform.

Set the dimension to 3d
Select the Export All check box

430

CUBIT 11.0 User Documentation

(i Mesh Geometry Export Options... |E|Pg|

[~ Usze Large File Format
v Erport All
[Ewxport Az Artifact

Elock 1D(s] |

_@ Cancel Finizh

e Select Finish to export the mesh.

al»

Power Tools GUI Tutorial

| =i

Overview

This tutorial demonstrates using the Power Tools on the CUBIT GUI for geometry decomposition and cleanup. The
following features will be covered:

Importing Geometry
Analyzing Geometry
Geometry Power Tools
Webcutting
Imprint/Merge

Mesh Power Tools
Meshing

Each of these steps is described in detail in the following sections. For this tutorial you will need to have a basic
understanding of the CUBIT GUI functionality, including how to select entities, maneuver in the graphics window, operate
the Control Panel, and use toolbars. If you have not already done so, we recommend completing the Basic Tutorial first.
The following image shows the geometry that will be used for this tutorial.

431

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 1: Import the Geometry

Begin by opening a new session of CUBIT. To complete this tutorial, you will need to download the ACIS file that contains
the geometry definition.

e Download geometry file knuckle.sat (Note: This link will not work from within Cubit. You will need to access this
documentation from the cubit web site, or locate the file on your computer. It is included in the distribution of
CUBIT under components\cubit\help\step_by_step_tutorials\power_tools)

® Select the Import option from File menu

432

CUBIT 11.0 User Documentation

(ll Cubit 10.2b

File Edit View Display Tools Help

B mew Chrh+h ;" @
% Qpen. .. Chrl+0

|E Save Crl+5

Recent Imports F

Export, ..

& et Ctri+p

Set Direckory
1 i) JAssorted Geometry Files)cubit0l, cub
2L MEMAPT 1033 crashbackup. cub

Exxit

Surface 11 ﬂ

— Perform &ction——————— i

| |l R[22

e The following dialog box will appear. Open the file by clicking on the name and selecting Open. If you do not
see the file, make sure that you are in the right directory, and that the file type is set to ACIS.

Lookiin: [Geomelry_Files - & B er E-

My Nebwok File name: lnuckle. sat - Open
Files of lype: [ACIS "8t "acis * sab] =

433

CUBIT 11.0 User Documentation

e Leave all of the import settings on their default settings and select Finish

(i1l ACIS Import Options - C:/../Tutorial Files/knuckle.sat @

[lgnore Bodies [Show Each'While Importing
[lgnore Free Surface: w Separate Multi-Yolume Bodies

[lgnore Free Curves [

[lgnare Free Wertices Mame: |

[Import &g Artifact
[v Import Attributes

@ Cancel Finizh

Your graphics window should now appear as follows:

e Use the mouse to rotate the image in the graphics window to get a better perspective. For help with using the
mouse in the graphics window, see Mouse Based Zoom, Pan and Rotate .

434

CUBIT 11.0 User Documentation

alr

'..

Power Tools GUI Tutorial

Step 2: Analyze the Geometry

The Geometry Power Tools are located in the Entity Tree Window under the blue geometry tab. This menu provides
access to many of the geometry analysis and clean-up tools in CUBIT.

435

CUBIT 11.0 User Documentation

P L Ves Duske Tk Hel

DeEE NEEA Fer 3D ADRL SRS S EN . e e s -+ -0 LR

EILILIE e

Ve U "] " g :.‘* m B

Thosen Ldgs Largh [1 ':""-_'7’""

e oA @ "

:I-;] r s

= Bt Mokt ____J

@SR 2 ¥ [|

Itk |

. « ||

I L

) B My

T E 2l
TWHa, o04c-uDOON [Weel (WE0. [CERe 8 oo TREEe D iR 8k .

Many geometries that are imported from other solid modeling software contain inconsistencies or small gaps that can
cause meshing to fail. These problems are the result of differences in tolerances, file transfer loss, or inherent limitations
in the parent system. In other instances, the geometry has no inconsistencies, but may be unsuitable for meshing
because of topology such as small angles, overlap, or features smaller than the desired meshing size. The geometry

analysis tool will analyze the volumes and return a list of suspected problems. To see a list of analysis options, click the
"Show Options" box below the Analyze button.

Many of these problems can be fixed using the tools on the Power Tools menu. These include Split Surface, Heal, Tweak,

Remove, Merge, Composite, Collapse Angle, Collapse Curve, and Collapse Surface. Many of these tools will be
demonstrated in this tutorial.

Open the geometry repair tab in the Entity Tree window
Type all in the Volumes to Analyze field

Set the Shortest Edge Length to 1

Press Analyze

436

CUBIT 11.0 User Documentation

3| &

E@ Valurme 10(z]
Shartest Edge LengthJ1
[Show Options

=

it

| 2 |

Iall

E nitity [0

| Entity Drata

Real

=

V4

v

B

X

&

5

WirkL
.
r

al

a4

5

il

+ -Curve v 5m Angles (8] Angle
+ Blend Surfaces (3)
-E--E|I:ISE Loops [£]

4 Bad Def Curves (6]

Area
Area
Length

After the Analyze Button is pushed, display area will appear as shown above. There are four suspected problems with this

geometry: Curves with Small Angles, Blend Surfaces, Close Loops, and Badly Defined Geometry. The numbers in

parentheses indicate the number of occurrences of this problem in the model. Clicking on the + sign by each label will list
the CUBIT entities by ID with this problem. Clicking on the + sign by each entity will cause that entity's children or parents

to be listed (depending on the entity and the type of geometry test). See documentation on Geometry Repair for more
information about the display window. Clicking on the name of an entity will highlight that entity in the graphics window.

® Select Vertex 45 under Curves with Small Angles

Observe that this vertex is highlighted in the graphics window.

e Right click and select Zoom To from the list of options

The graphics window should look like this:

437

CUBIT 11.0 User Documentation

e Right Click on Vertex 45 and select Reset Zoom from the list of options

The image should now be reset to the previous graphics state.

You can experiment with some of the other options in the top half of the right click menu. They are:

Fly-in - Animated zoom feature

Locate - Labels entity

Draw - Draw this entity by itself

Draw with Neighbors - Draw this entity with all adjacent curves and surfaces
Clear Highlights - Clear all highlighted entities

Reset Graphics - Refresh graphics screen

2|
The graphics window may also be reset by pressing the reset graphics button 'on the menu.

«lp

438

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 3: Healing the Geometry

The first step to improving any geometry is to look for badly defined geometry and to fix it using the Autoheal tool in
CUBIT. The Geometry Analysis tool may detect these inconsistencies, but only if such a function exists in the parent
software. It is always a good idea to run the Autoheal on imported geometry. In this example, the Power Tools has located
some badly defined curves. This step will show you how to use the geometry repair tool to fix these curves.

e Highlight all of the badly defined curves by holding down the Shift key while selecting
e Right click and select Heal Owning Body from the list of options

OR

e Click the button

439

CUBIT 11.0 User Documentation

3| & @2
6@ Volume D) Jal

Shortest Edge Length i'l

[Show Dptions

;@"J Analyze |

Entity ID Entiy Data |
3'-] Curve wd Sm Andles [3]Angle

- Blend Surfaces (3) hres

- Cloze Loops (2) hres

=-Bad Def Curvez [F] Length

Zoam To
Reset Zoom
Flw-in

Locake

Draw |_

Real . :
’ _ E Drraw With Meighbors E’

Clear Highlights

i
L ﬁ 5’ ﬁ | Reset Graphics

Tweak, . .

R
N
=N
“ al

Remove, . . |

split. . . E

JB %N
|

Remove Slivers, | .

Reqularize ==

Property y

B General
Id f’:"{; (virtual) Composite, |

Heal Cwning Body. . .

The Geometry Repair Tool does not execute any geometry clean-up commands directly, but directs you to the place on
the Control Panel where this function can be executed. The following menu will appear on the Control Panel. Notice that
the id of the owning body has already been pasted into the input window.

(] Select the Autoheal button
® Press Apply

440

CUBIT 11.0 User Documentation

—Mode - Geometny -

29EHD
Q<o xah

—Achion - Modify-

alm s = R|-
B o %

Heal -
Yalume [D[z]

—Select
7 Analyze * Autoheal

m

[Rebuild Body
[T Keep Originals
[~ Make Edoes Talerant
[~ Generate Log

Filenarme |
__%} | | Apply

The output window on the CUBIT GUI should appear with the following message. You may have to scroll to see the whole
thing. The percentage before and after healing are 97% to 100%. Healing has been successful.

CUEIT> healer autoheal wolume 1 =
Healing Veohume 1
Percentage good geometry before healing 574
Percentage good geometry after healng: 10084
Successhilly healed Vohume 11
Tpdated wohume(s): 1
Maodfied voharne 1

Percentage good geometry in Vohme 1: 10084

Analyzed 1 Volume: 1

Found 0 bad Vertces.

Found 0 bad Curves.

Found 0 bad CoEdges

Found 0 Welurmes wath problerms.

Journaled Command: healer autoheal volume 1

Ll

Y\ _Command Ay, Emar f Histon f

Run the geometry analysis test again to guarantee that all bad geometry has been removed.

441

CUBIT 11.0 User Documentation

® Press the Analyze Button in the Geometry Repair window

<l

e P el P |

Power Tools GUI Tutorial

Step 4: Mesh Power Tools

The Mesh Power Tool provides an easy and graphical way to determine if volumes are meshable. This tool will employ
the AutoScheme feature in CUBIT to select and assign schemes to meshable volumes. If a volume is not currently
meshable, it will be flagged and highlighted. Use the Mesh Power Tool to determine if the volume is currently meshable.

Click on the purple Mesh Tools tab in the Power Tools window.

Select Volume as the entity type in the pulldown menu (It may already be selected)
Enter all in the input window

Press Apply

*3 | & -« ‘ 2 ‘
& [Volure ~] [:

@ Optians | Analyze

Scheme Set/Mo Scheme Set

M ame I Scheme |
'E“H Mo Scheme Set

@l

| SR 1 i
8@

Volume 1 will appear under the "No Scheme Set" heading.

e Toggle the Graphics Button in the bottom left corner

442

CUBIT 11.0 User Documentation

The graphics window should look like this with Volume 1 highlighted in red. Using this graphics feature, all volumes that
are meshable will be highlighted in green, and all volumes that are not currently meshable will be highlighted in red.

® Turn the Graphics Button off so that Volume 1 is shown in green again

<!p|

—_—

Power Tools GUI Tutorial

Step 5: Splitting Filleted Surfaces

The previous step determined that the volume was not currently meshable, and that further decomposition was required.
This decomposition can be performed using the tools in the Geometry Repair power tools. A good place to start is with
blend surfaces.

A blend surface is a transitional surface that connects two orthogonal planes, also known as a fillet. Blend surfaces can be
problematic in meshing because there is no clear transition between the two orthogonal surfaces, making sweeping or

mapping algorithms difficult. The Split Surface function divides these blend surfaces (or any surface) into two distinct
surfaces.

e Select Surface 22 from the list of blend surfaces
e Right click and select Zoom To from the list of options

The graphics window should look like this:

443

CUBIT 11.0 User Documentation

e Right click with Surface 22 highlighted and select the Split button

® Click the Jbutton on the tool panel

OR

444

CUBIT 11.0 User Documentation

'&B .' h]@ ‘ 2 ‘

& Volume ID(s) |4l

Shortest Edge Length]1
[~ Show Options

;@J Analyze

Entity 1D | Entiy Data |
IE Curve w/ S dngles (8] Angle
':J Blend Surfaces (3] Area

IE Surface 10
IE Surface 15

IE Cloze Lc £oom Ta
#-Bad Def Reset Zoom
Fly-in
Locake
Draw
Beal Diraw ikh Meighbors
y Clear Highlights
ﬁ g Reset Graphics
T F/ Tweak, . .
—Wirtual L
. Remave. . .
Flg R

—

Phisin b ﬁ Remaove Slivers, | .

ii Q] Reqularize

—_— Collapse Surface (Mirtual), . .
Froperty
' B General ’p.? (Wirtual) Composite, | .

The Geometry-Surface-Modify-Split Menu will appear on the Control Panel. Make sure the Surface id is input in the

window.

Press the Preview Button

445

CUBIT 11.0 User Documentation

—Mode - Geometry

294ED

—Entity - Surface

dlo |+

—Action - kMaodify
@A Sy = ﬂ|
=

| 5plit

Surface [D[z]
Split Method

| Along Fillet =l

__@ Bia i _. '&'pply "

...................................

The blue line shows where the surface will be split.

446

CUBIT 11.0 User Documentation

® Press the Apply Button

The surface should now appear split.

® Repeat these steps with the opposite blend surface (ID 10)

<\ p

—_—

Power Tools GUI Tutorial
Step 6: Web Cutting

Since the model has several through holes, sweeping is not possible from a single source and target. However, it is
possible to divide the model into three sweepable regions. The figure below shows where to divide the model to get it into
sweepable regions. These regions coincide with the holes in the model.

Web cutting is this process of dividing volumes into sweepable regions by cutting with a plane. For this exercise, you will
use the curves that were just created with the split surface command to cut the volume.

447

CUBIT 11.0 User Documentation

Sweep
Directions

N

Webcut
Here

~_0

S~

In order to visualize the process more clearly, switch to the isometric view.

e Change the view to isometric in the Display menu under View Point

448

CUBIT 11.0 User Documentation

(i1l Cubit 10.2b

Filz Edit “iew | Display Tools Help

DNE
3 8B

5 Wolume 1D(z) @

Shortest Edge Le %
| Show Optian @

2 |
e

[+ Surface 2

+ Cloze Loops E:_.j

¢ Bad Def Cur S

Y

View Poink

Render Mode
Geometry

Mesh

araphics Composite
Refresh Fa
Background

Zoom In

Zoam Suk

Zoom ko Fik

Toagle Perspective
Toggle Scale

Default Selection Mode

Front
Back
Top
Bottam
Right
Left

Fa

F10

F11

The web cutting menu is located under Geometry-Volume-Webcut on the Control Panel.

® Click on Geometry, then Volume, then Webcut on the Control Panel
e Select Plane Normal to Curve (near vertex) from the list of options

449

CUBIT 11.0 User Documentation

tode - Geometmy

DL EFE
-

=r nfit_l;l -Wolume

> \Rie

—Aetion - Webcut

o
|

A Sy
B @K
]Ehu:up ﬂ

Chap

Flane

Flane Wertex
Flane Surface

i=| 5|

:Plarie Marmnal To Curve [near verte
Plane Marmal Ta Curve [vertex)
Tool

Sheet
Sheet Extended From Surface
Sweep Curve
| Sweep Surface
Cylinder Badius
Loop i

The following image shows the entity ids that will be used to webcut the volume. Select entities with the mouse by clicking
on them.

450

CUBIT 11.0 User Documentation

Enter Volume 1 by typing it or selecting from the graphics window
Enter Curve 35 by typing it or selecting from the graphics window
Change the Type to Near Vertex

Enter Vertex 51 by typing it or selecting from the graphics window
Press Preview

451

CUBIT 11.0 User Documentation

S --Mudé-ﬁédi‘ﬁetr}l- 1
s N JR M [
.---E'r"|t'it_l,l ~elume
& ol xip
Action - Webcut -

LGS
B Q| X

] Plane Marmal To Curve [near vertex) _v_J
Wiebcut Target
Wolume IDjs] 1 =]

Curve [0 IBS_ﬂ I

~ Type
" Position f# Mear Vertes

®ial |0

Yial |0

Zval |0

Wertex |0 131 S P P P P e e |
[T Group Fesults

@ Prewview Apply

A blue preview plane should appear in the following position. Check to make sure that your model looks the same.

452

CUBIT 11.0 User Documentation

® Press Apply

The volume has now been split into two volumes. Volume 2 is shown in yellow.

Repeat these steps with the other side of the part. The Volume and Curve ids will remain the same.

e Enter Vertex 49 in the input window or select from the graphics window
® Press Preview, then Apply

The final webcut volume should look like this:

453

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 7: Removing Small Surfaces

Some surfaces are too small for analysis and should be removed from the model. In this example, Surface 15 and
Surface 17 may fall into that category, assuming that the distance between curves on these surfaces is smaller than the
desired final mesh size. You can remove these surfaces by extending adjacent surfaces until they intersect.

e Rotate the model to the following orientation

454

CUBIT 11.0 User Documentation

® Press Analyze on the Geometry Power Tools menu

You will notice that a new category has appeared labeled Overlapping Surfaces. This is because there are two new
surfaces created for each of the webcuts that overlap a surface on the original body. This can be removed using the
Imprint/Merge function which will be explained in Step 9.

e Zoom to Surface 17 in the graphics display
e Right Click on Surface 17 in the Geometry Repair window and select Remove

OR

R
(] Press the Remove Button on the tool bar

455

CUBIT 11.0 User Documentation

2 ® @2
6@ Volume ID(s] 4l

Shortest Edge Length |'I
[Show Options

;@‘ &nalyze

Entity ID Enfity Data |
- Curve wd Smanglez (3] Angle
- Blend Surfaces [1] Area
E] Cloze Loops [2] Area
H _ e
: E-Su Zaom Ta
- kderge Reset Zoom
[Overl: Fhy-in
Locake
Real Dirat
Draw With Meighbors @

Clear Highlights

™
T e e

Reset Graphics

. Tweak, |

Perfarm E. Split. .
h g l% Remaove Slivers. . .

Regularize

RiY-
Ja

F'ru:upert_l.l
= Gene .-"",/ (virtual) Composite, |

o=

The Control Panel will appear under the Geometry-Surface-Modify- Remove heading. The Surface id should appear in the
input window.

® Make sure that Surface 17 appears in the window and the Extend button is checked
® Press Apply

456

CUBIT 11.0 User Documentation

tode - Geometmy

39T
Entity - Surface

e x|
Action - Modify - .
ORGSR
=)

J FRemove

Surface [D[z) l AR
v Extend

[FKeep Suface
[~ Keep Copy OF Original

v Remove Individually

4

Apply

The small surface no longer appears.

457

CUBIT 11.0 User Documentation

o Highlight Surface 15 and select the Remove option

Surface 15 is shown highlighted in the following image.

e The Geometry-Surface-Modify-Remove option appears on the Control Panel. Make sure that Surface 15
appears in the input window.

® Press Apply

Reset the Zoom to show the entire model.

458

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 8: Tweaking Surfaces

Tweaking is the process of deleting, moving, or offsetting, surfaces and extending or trimming adjacent surfaces to fill in
the gaps. Tweaking is useful for eliminating gaps between components, simplifying geometry or changing the dimensions
of an entity. Tweaking will be used in this example to decrease the radius of the upper cylinder.

Begin by reanalyzing the geometry.
® Press Analyze on the Power Tools menu

There should be 1 entry under the "Close Loops" category for Surface 41. A close loop (pronounced KLOS) is a surface
which has two loops that are within some small distance of each other at their closest points. The parameter for distance
is the square of the shortest edge length parameter.

® Press the Tweak Button (since you are not tweaking Surface 41 directly, the surface does not need to
be highlighted when you press the tweak button)

The Geometry-Surface-Modify-Tweak will open on the Control Panel as shown below.

459

CUBIT 11.0 User Documentation

-~ Made - Geametry
292
g:nlfﬁ.lzi.ty - Surface
e
-~ Action - Modity —
| A
=

J Tweak _:_!

Suface [Ds) FES

~
3

& =

Ll

= ﬁ”

bove To Entity

tove To Location

b ove Delta Digtance

| Move Nomal Ta Surface

Remove
Cone

e Enter Surface 16 by typing it in at the input line or selecting from the graphics window
e Select the Offset option from the pulldown menu

Surface 16 is shown highlighted below.

460

CUBIT 11.0 User Documentation

(] Enter an Offset Value of -0.9.

The offset value is a percentage of the current size. Entering -0.9 will decrease the radius by 10 percent.

® Press Apply

The graphics window should now look like this. Notice that the radius of the cylinder has shrunk inward, increasing the
gap between the edges on Surface 41.

461

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 9: Imprint/Merge

Imprinting is the process of projecting curves from one surface onto an overlapping surface. Merging is the process of
taking two overlapping surfaces and merging them into one surface shared by two volumes, creating non-manifold
geometry. Both imprinting and merging are necessary to make adjacent volumes have identical meshes at their
intersection. Imprinting and merging is almost always necessary after webcutting.

e To open the imprint/merge menu, select the Geometry icon, then Volume, then Imprint/Merge on the Control
Panel

Enter all in the input window Check the Imprint and Merge boxes
Press Apply

462

CUBIT 11.0 User Documentation

Mode - G EléII'I'IIE':tr}'

EX: B

= Er%fi.ty Malume

i—-@/’ * | &

. .ﬂ.ctinn-l.mprintMerge
a ‘ A | Sp
ECIE

| Irmprint/derge ﬂ
Volure 1D(z] [l |

I

i=| s |

v Imprint
[With

£ Wolume
|7 Curve

" Wertes
| Walume 1Dfs) |

[~ Keep

v Memge
T Wwith
| Yolume ID[z)]

[T Group Besults

__%j Apply

You will not notice any visible changes in the graphics window after imprint/merge operations, but results of the operations
will be printed in the output window. Confirm that both surfaces have been merged by reading the output in the graphics
window (You may have to scroll to see all of the results)

You can return to the Power Tools menu to see that the Close Loops and Overlapping Surfaces are gone.
® Press Analyze in the Power Tools menu

The display window will now read "Nothing Found" to indicate that are no geometry tests that fail.

463

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 10: Compositing Surfaces

Composite surfaces are adjacent surfaces that have been merged into one surface. Composite surfaces are created
using Virtual Geometry, which is a built-in geometry kernel that sits on top of the existing geometry, and does not change
the underlying geometry definition. Virtual geometry has the added advantage of being reversible. It can be removed after
meshing. The general purpose for using composite surfaces is to deconstrain the mesh. For example, compositing two
surfaces will remove the requirement that nodes be placed on the curve between the surfaces. Composite surfaces will be
used in this example to facilitate the sweeping algorithm.

® Open the Mesh Tools tab
® Press Analyze
e Toggle the Reset Graphics button to show entities in green and red (for meshable and non-meshable volumes)

“}| & @ |9

& | Volume | Jall

_@ Options | Analyze

Scheme Set/MHo Scheme Set

M arne | Scherme |
= Mo Scheme Set

i 1y Yolume 1

19 Yaolurme 2

f [1y Valume 3
E Scheme Set

K| | iy | B
Tl

No volumes are listed as automatically meshable. In the graphics window, red indicates that the volume scheme has not
been set. Green indicates that the scheme has been set.

e Toggle the Reset Graphics button so it returns to the normal colors
® Open the Geometry Tools tab

7|
® Press the Composite Button on the toolbar

464

CUBIT 11.0 User Documentation

Control Panel B

—~Mode - Geometry

EA: M

~Entity - Surface

e |+|@

—Action - Madify
a[m|s| == x|
(=

I Compozite :_I

JE— T]

surtace(z] t:’::;e:ra.?e@u;ﬁﬁmﬁﬁ'mﬁﬁwﬂw

—Select
i+ Create " Delete

b ax Surface Angle |

— v Composzsite Bounding Curves
keep Verte |D[z) e Al

b aw Curve Angle |1]

Wirtual Geometry

Presiew | Apply

The Geometry-Surface-Modify-Composite menu will open on the Control Panel.

465

CUBIT 11.0 User Documentation

® Select Surfaces 9 and 27 (shown in the image above) by entering them in at the input line, using CTRL-Click
(Windows) in the graphics window, or Command Key-Click (Macintosh) in the graphics window

Make sure the Create button is checked
Press Apply

466

CUBIT 11.0 User Documentation

Mode - Geometry

N,

=

Entity - Surface

s

Acthian -
[

i

X

£

=

= | =] %]

| Composite

Surface 1Dz |3 27

Select
i+ Create

" Delete

Max Surface Angle |

v Composite Bounding Curves

K.eep Wert

exlDis) |

bax Curve Angle [15

Wirtual Ge

z

The two surfaces should appear merged.

ornekny

Apply

467

CUBIT 11.0 User Documentation

Repeat these steps with the opposite side.

(] Rotate the view window so Surface 6 and 24 are visible

e Select Surface 6 and Surface 24 by using CTRL-Click (Windows), Command Key-Click (Macintosh), or
entering the ids the input window

® Press Apply

468

CUBIT 11.0 User Documentation

~Maode - Geametry

29RO

—Entity - Surface

Sle x|

— Action - Modify

ﬂ'\T|EER|

a
=

I Compozite _:J
Surface IDs | 24

—Select
{* Create i Delete

b ax Surface Angle I

— [+ Composite Bounding Curves

Keep Vettex 1D(s) [
b ax Curve Anale |1 5

Wirtual Geametny

%} Apply

Check to see that the surfaces have been composited and that your graphics window looks like the following image.

469

CUBIT 11.0 User Documentation

Finally, surfaces 11, 25, and 26 (shown below) need to be composited.

470

CUBIT 11.0 User Documentation

Use the command panel to choose surfaces for the composite command.

471

CUBIT 11.0 User Documentation

—Mode - Geometmy

292EO

—Entity - Surface

&le | x|a

—Action - Maodify

"ﬁ?ﬁ = ?tl
=

I Compozite :j
Surface IDs |25 11 26

—Select
(+ Create " Delete

M ax Surface Angle i
— v Compozite Bounding Curves

k.eep Wertes 1D[z)]

b ax Curve Angle |1 4]

Yirkual Geometmy

= Apply

Press the apply button and check the results in the graphics window.

472

CUBIT 11.0 User Documentation

Power Tools GUI Tutorial

Step 11: Meshing the Model

Use the Mesh Power Tools to apply schemes to the remaining volumes.

(] Press the Mesh Tools tab in the Power Tools window
® Press Analyze

473

CUBIT 11.0 User Documentation

R | & @ ‘ 2]
&@ | Volume +| |all

_..@| O ptions | Analyze |

‘Scheme Set/No Scheme Set

!‘\lame | Scheme J
ﬂ Mo Scheme Set

'i

15 Y olume 1 sweep
HE@Yolume 2 sweep
HEEYolume 3 sweep

XeER @

All of the schemes have now been set with a sweeping algorithm. The model is ready to be meshed. All volumes should
appear green in the graphics window.

474

CUBIT 11.0 User Documentation

® Toggle the Reset Graphics button to return volumes to their original colors

Select Volume as the entity, and Intervals as the Action.

Enter all in the "Select Volumes" input window
Select Constant Size from the list of sizing options
Enter 2 for the size

Press Apply Size

Press Preview

475

CUBIT 11.0 User Documentation

—Mode - Mezhing

P

=F hitity - Y alume

P
< |
2

—Achan - [ntervals

v |>|¥ @2
#.

o

—Select Volumes

|all
I Constant Size ;‘
Size |4
¥ Check For Overlapping Surfaces
Prewiew | Apply
@ Mesh

The graphics window should appear as follows, with the mesh size increments highlighted on all of the curves in the

model.

476

CUBIT 11.0 User Documentation

EEETET AT T -Tam

L -."'1
_gaptEeAn e sl e
Ok

'rr

-y,
-
L]
L]
L]
[
L
-

%
Ll
.
L
L
!
.
“
.
-
[
.
.
.
3
L3
.
Y
.
i

B e we § W ETETOEEWOWR-EE W

e Go to Mode - Meshing, Entity - Volume, Action - Mesh, and press the Mesh Button

There is no need to press the Apply Scheme button since the scheme have already been set in the Meshing Tools.

477

CUBIT 11.0 User Documentation

—Mode - Meshing

W | |x |2
3

— Select Entities to Mesh
Jal

Select Meshing Scheme

I Autamnatically Caloulate d
[T Advanced
@ Apply Scheme

v Check For Overlapping Surfaces
Scheme: Mesh

The final mesh should look like this:

478

CUBIT 11.0 User Documentation

Congratulations! You have just completed the Power Tools Tutorial. Click on the arrow to return to the Tutorial home.

<! p

pi-fra bl ire |

Decomposition Tutorial

Creating Sweepable Volumes Through Webcutting

Most volumes require some measure of decomposition before they can be meshed with a hexahedral meshing scheme.
The most common hexahedral meshing tool is the sweeping algorithm. Sweeping is the process of creating a hexahedral
mesh by extruding a quadrilateral surface mesh from a source surface onto a topologically similar target surface by way of
a linking surface. The surface mesh can be meshed with any surface meshing scheme (i.e. structured or unstructured
mesh), but the most common surface meshing scheme for the sweeping algorithm is the pave scheme. In fact, the
sweeping algorithm is sometimes called the "pave-sweep" algorithm. Most volumes aren't automatically sweepable, which
is why geometry decomposition is so important to the meshing process. Decomposition usually involves a series of
webcutting, boolean, and virtual geometry operations that break up a larger model into sweepable regions. Studies have
shown that this step in the meshing process is the most time consuming for the analyst. The goals of this tutorial are for
the user to learn to:

Recognize sweepable volumes

Recognize how to decompose a model into sweepable parts

Gain proficiency with webcutting and other decomposition techniques
Avoid common pitfalls with decomposition and sweeping

PR

479

CUBIT 11.0 User Documentation

Why use sweeping?

Of all the hexahedral meshing schemes in the Cubit toolkit, sweeping is considered the most reliable at producing high
quality elements. Although decomposing a model into sweepable volumes can be time-consuming, and sometimes falls
into the realm of trying to fit a square peg into a round hole, the pave-sweep algorithm has a high rate of success, and it
sometimes the only way to get a hexahedral mesh on a model.

What makes a volume sweepable?

Recognizing sweepable topologies can be an art form. Sweepable volumes can be comprised of many different
topologies. We typically classify sweeping problems into three groups, based on the number of source/target surfaces.

Basic Sweep Groups

One-to-one: A volume with a one source surface and one target surface.

Target Surface

rget
Surface

Many-to-one: A volume with multiple source surfaces and one target surface

480

CUBIT 11.0 User Documentation

Multisweep (or Many-to-Many): A volume with multiple target surfaces

{

)
|
N -
11

I
{

I
[
!
T
1

i
0

.'

ol
| -
7

I
I
I L
!
]

I

I
-
L] T
L
i

|
T
P
A [

i
]
i

T
¥

[
f T
Py
I

Points to consider when determining whether a volume is sweepable

e Swept surface meshes can be extruded through a volume which is rotated or translated. However, if the
translation/rotation is severe then the quality of the resulting mesh may be poor.

e A volume with multiple target surfaces and a single source surface can sometimes be inverted and handled as
a many-to-one sweepable volume. Otherwise, it is treated as a multisweep problem.

e Imprinting introduces new topology onto surfaces. Sweepable volumes may not be sweepable after imprinting
and merging adjacent surfaces

e Multisweep is still under development, and has limitations, so if you are having difficulty with the multisweep
algorithm, it is usually a good idea to decompose it into many-to-one or one-to-one sweepable regions.

e Cubit won't always automatically recognize your volume as a sweepable volume, even if it is. Sometimes, you
have to give it a list of source/target surfaces explicitly.

481

CUBIT 11.0 User Documentation

Basic Sweep Paths

In addition to the different topologies, sweepable volumes can be classified by the sweep direction. These include: top-to-
bottom, inside-to-outside, and around (rotational). Be sure to consider all the possibilities for sweep directions when you
begin decomposing a model. And keep in mind that sweep paths must be compatible with adjacent volumes. To be
compatible, overlapping surfaces must have the same scheme (i.e. both must be a linking surface or a paved surface).
The volume below is meshed three different times with the three different sweep directions. Notice the difference in
element sizes and orientations between the meshes. See if you can pick out the different source and target surfaces in
each example. As an exercise, try to mesh this model with each of the different sweep paths.

Top-to-Bottom Inside-to-Outside Around (Rotational)

One-to-one (this is the default

Many-to-one Many-to-one sweep direction for this model)

What are some good strategies for decomposing my model?

Recognizing when a volume is sweepable is a difficult task of itself, but being able to come up with viable webcutting,
compositing, and boolean strategies to make a volume sweepable is even more difficult, and can only be achieved
through practice. Here are some general principles to follow when decomposing a model.

1. Select your sweep path

2. Use as few webcuts as possible

3. Set your own source and target surfaces if Cubit does not pick them automatically

4. If one of your volumes does not mesh, or has an undesirable mesh, try changing the order in which you mesh
volumes. This will hardset the intervals on the volumes.

5. The Reset Volume command will remove all schemes and interval settings from volumes.

6. If changing the mesh order or resetting the volumes does not work and you continue to get "Matching Intervals

Failed" errors, set explicit intervals on some or all curves.

7. Make additional webcuts if necessary.

8. Check for sliver surfaces or curves that may have been introduced during decomposition and remove these
through tweaking collapsing, or compositing.

9. Change surface vertex types on mapped or submapped surfaces if you need to force a certain configuration

10. Use partitioning to introduce virtual geometry constraints without affecting the underlying geometry

11. Composite surfaces to remove constraints without affecting the underlying geometry

12. Save your work often. For a complex model, the meshing process can be very iterative. You may need to start
over many times until you find an acceptable solution.

The following is a compilation of several different decomposition problems of varying difficulty.

Example Image File

Beginning

482

CUBIT 11.0 User Documentation

Sweeping through multiple adjacent volumes

example0l.sat

Interlocking rings

Webcutting using the "sweep" option

example03.sat

m example02.sat

Using the loft command

example04.sat

Multiple sweep directions

example05.sat

®

483

CUBIT 11.0 User Documentation

Practice Model example06.sat

Advanced

Employing symmetry and controlling skew example07.sat

Using virtual geometry example08.sat

Sweeping volumes with narrow angles and surfaces example09.sat

484

CUBIT 11.0 User Documentation

Example 1. Sweeping multiple adjacent volumes

The following model has several interior volumes which share surfaces. This example may at first seem complex, but it
actually requires very little decomposition. The key to this example is that each of the interior volumes is already
sweepable, oriented along the same sweep axis, and none of the linking surfaces have additional topology introduced
through imprint/merge. In fact, there is only one required webcut to make this model automatically sweepable.

Figure 1. Exterior view

Figure 2. Interior view

We examine several of the volumes below.

Source Surface(s) Target Surface(s) Sweep type

485

CUBIT 11.0 User Documentation

Many-to-one Sweepable
Imprinting and merging
adjacent volumes creates
additional partitions on the
source surface, but the target
surface does not contain
imprints.

Many-to-one Sweepable
Multiple source surfaces due
to interior void

One-to-One Sweepable
Source and target surfaces
are single surfaces, and there
are no imprints on the linking
surfaces

Many-to-one Sweepable
Interior void causes multiple
source surfaces.

08:¢7

-
O

Multisweep

Imprinting causes multiple
source surfaces and interior
void causes multiple target
surfaces. This volume requires
decomposition

Suggested webcut

Webcut

Command

486

CUBIT 11.0 User Documentation

CUBIT> webcut volume 5 with sheet extended
from surface 70

CUBIT> imprint all

CUBIT> merge all

Volume o

Final mesh

The final mesh is created at a size of 0.15 for all volumes.

Example 2. Interlocking rings

The following example is composed of two rings of constant cross-section that can be swept along their axes. The
problem here is that the rings overlap, forming a tetrahedral shape which cannot be swept. The key to solving this
problem is separating out the region of overlap, explicitly setting the source and target surfaces, and using the tetprimitive

scheme on the tetrahedral region.

487

CUBIT 11.0 User Documentation

Suggested webcuts

Webcut

Command

CUBI T> body 1 plane surface 5

CUBI T> webcut body 2 sheet extended from
surface 4

CUBI T> webcut body 3 plane surface 12

CUBI T> webcut body 4 sheet extended from
surface 10

There are five volumes that result from the webcutting. Two of them are automatically sweepable. Two of
their schemes set explicitly, and one of them is meshed using the tetprimitive scheme.

Webcut

Command

488

them must have

CUBIT 11.0 User Documentation

Surfeise F
Y
pocly 2

SuUefelcs 17
i 7

Srfolcs 2

Bocly A

i 3 hr
Surfocs 18

Final mesh

One-to-one Sweepable

Source and target are set automatically using
autoscheme

CUBI T> volune 1 3 schene auto

One-to-one Sweepable
Must have source and target set explicitly

CUBI T> vol ume 2 schene sweep
source 17 target 7
CUBI T> vol ume 4 schene sweep
source 29 target 18

Non-sweepable
Use the tetprimitive scheme

CUBI T> curve in volune 5
interval 6

CUBI T> vol une 5 schene
tetprimtive

CUBI T> volune all size 0.5
CUBI T> nmesh vol une all

The final mesh is created at a size of 0.5 for all volumes.

489

CUBIT 11.0 User Documentation

Example 3. Webcutting using the sweep option

This example introduces additional webcutting options. This example would be a simple many-to-one sweep except for
the overhanging lip and the protrusions on the bottom surface. To a beginner user, it may at first seem reasonable to use
the bottom surface as a webcutting plane. However, this will not create a many-to-one sweepable volume. Instead, you
need to use the protruding surfaces as cutting planes, and extend them through the entire volume.

Suggested webcuts

Webcut Command

490

CUBIT 11.0 User Documentation

CUBI T> webcut volume 1 with sheet
extended from surface 27

CUBI T> webcut volume 1 with plane
surface 30

CuBI T> webcut vol all sweep surf 26
vector -1 0 O through_all

Now Volume 3 (red) has only 1 target surface.

CUBI T> volune all size 0.05
CUBI T> nesh vol une al

Final mesh

The final mesh is created at a size of 0.05 for all volumes.

491

CUBIT 11.0 User Documentation

Example 4. Using the Loft command

In the next example, the loft command significantly decreases the number of required webcuts. This model also
demonstrates using 2 separate sweep paths (top-to-bottom and rotational) on adjacent volumes.

Webcuts created from sweeping |Webcuts using loft command

Original Volume surfaces (not recommended) (recommended)

Suggested webcuts

Webcut Command

492

CUBIT 11.0 User Documentation

CUBI T> webcut body 2 | oop curve 6

CUBI T> webcut body 2 sheet extended
fromsurface 1

CUBI T> create surface fromsurface
10
CUBI T> create surface from surface
4
CUBI T> create body |oft surface 19
20

493

CUBIT 11.0 User Documentation

CUBI T> webcut body 3 tool body 7
CUBI T> del ete body 5 6 7

CUBI T> webcut body 2 3 pl ane ypl ane
CUBI T> inprint al

CUBI T> nerge al

CUBI T> vol unme all size 0.15

CUBI T> nesh vol une al

Final mesh

The final webcut model consists of a central shaft which can be swept top to bottom, and a surrounding casing which can
be swept around. This is possible because the shared surface is a linking surface for both types of sweeps. The final
mesh is created with a size of 0.15

494

CUBIT 11.0 User Documentation

Example 5. Multiple sweep directions

The next example gives another example of using different sweep directions on the same model. The following model
shows a brick which is perforated by several cylindrical shafts. The shafts do not intersect each other.

495

CUBIT 11.0 User Documentation

Suggested webcuts

Webcut

[
L

Command

CUBI T> webcut volume all with plane
ypl ane of fset 20

CUBI T> webcut volume all with plane
ypl ane of fset -20

CUBI T>i nprint al

CUBI T>ner ge al

All of the volumes in this model are now one-to-one sweepable. However, the source and target surfaces for the main

block portions must be set explicitly

496

CUBI T>vol ume 8 schenme Sweep source
surface 94 target surface 90 rotate
of f

CUBI T>vol unme 10 schene sweep source
surface 71 target surface 73 rotate
of f

CUBI T>vol ume 12 schene Sweep source
surface 97 target surface 100
rotate off

CUBI T>vol une all size 2

CUBIT 11.0 User Documentation

CUBI T>mesh vol une all

Final mesh

In this model it is possible to have different sweep directions since the surfaces which overlap are both linking surfaces.
The final mesh is created with a mesh size of 2 and is shown below.

Example 7. Employing Symmetry

One technique for creating a symmetric mesh on a symmetric model is to mesh only half of the volume, then copy the
mesh onto the other half. The following example employs this technique. This model at first appears quite simple, but it
actually requires a good deal of webcutting to get a reasonable mesh that is not highly skewed.

497

CUBIT 11.0 User Documentation

Suggested webcuts

Webcut Command

498

CUBIT 11.0 User Documentation

CUBIT> webcut body 1 with plane xplane
offset 0

CUBIT> delete body 2

CUBIT> webcut body 1 with cylinder radius
2.75 axis y

499

CUBIT 11.0 User Documentation

CUBIT> webcut body 1 3 with plane yplane
offset 0

CUBIT> webcut body 1 with plane yplane
offset -15

CUBIT> webcut body 1 6 4 with plane surface
Surfacs &4 |64

500

CUBIT 11.0 User Documentation

CUBIT> webcut body 1 with plane surface 67

rfcices &7

CUBIT> webcut body 5 with plane zplane
offset 1.5

CUBIT> webcut body 11 with plane zplane
offset -1.5

501

CUBIT 11.0 User Documentation

CUBIT> create vertex on curve 540 distance 2
from vertex 368

CUBIT> webcut body 4 with plane vertex 409
vertex 410 vertex 630

CUBIT> create vertex on curve 1093 distance
3 from vertex 646

CUBIT> webcut body 14 with plane vertex 570
vertex 569 vertex 647

This wedge shape webcut is a method of
controlling skew in the final mesh.

CUBIT> unite body 5 11 12

502

CUBIT 11.0 User Documentation

CUBIT> unite body 4 13
CUBIT> delete vertex all
CUBIT> imprint all
CUBIT> merge all

CUBIT> vol all size .5

CUBIT> surf 229 size .25
CUBIT> mesh surf 229

CUBIT> volume 5 scheme sweep source 229
target 230

CUBIT> mesh volume 5

503

CUBIT 11.0 User Documentation

CUBIT> volume 4 scheme sweep source
surface 526 target 528

%4 |CUBIT> mesh volume 4

CUBIT> volume 14 scheme sweep source 543
target 541

CUBIT> mesh volume 14

CUBIT> volume 15 scheme sweep source 220
target 538

CUBIT> mesh volume 15
CUBIT> delete mesh

CUBIT> unmerge all

504

CUBIT 11.0 User Documentation

CUBIT> webcut body 6 with plane surface 524

CUBIT> unite body 16 17

W olurms &

CUBIT> webcut body 8 with plane surface 524

505

CUBIT 11.0 User Documentation

CUBIT> webcut body 18 with plane surface
540

clurne

CUBIT> webcut volume 9 with plane zplane
offset -3 rotate 5 about x

This is another effort to prevent skew in the final
mesh

CUBIT> imprint all

CUBIT> merge all

CUBIT> mesh volume 5 (swept around)
CUBIT> mesh volume 4 (mapped)

CUBIT> mesh volume 14 (swept top to
bottom)

CUBIT> volume 15 scheme map

CUBIT> mesh volume 15

CUBIT> volume 18 scheme tetprimitive
CUBIT> volume 18 interval 3

CUBIT> mesh volume 18

506

CUBIT 11.0 User Documentation

Hifoees Gl

CUBIT> volume 9 scheme sweep source
surface 579 601 target surface 592 rotate off

CUBIT> mesh volume 9

CUBIT> mesh volume 20

S rinm= 570 |(CUBIT> volume 6 scheme sweep source 569
target 570

CUBIT> mesh volume 6

B |rfoiee 224

CUBIT> volume 3 scheme sweep source 224
lurne 3 target 226

mlrr= J
CUBIT> surf 224 226 scheme map

CUBIT> mesh volume 3

507

CUBIT 11.0 User Documentation

CUBIT> volume 19 scheme sweep source 543
target 586

CUBIT> mesh volume 19

)

Surlacs
o BE52

Suri

CUBIT> volume 17 scheme sweep source 545
583 582 target 239

Surfons 2

Surfrice 40

Surfacs 574

o

CUBIT> volume 8 scheme sweep source surf
602 601 574 target 250

CUBIT> mesh volume 8

508

CUBIT 11.0 User Documentation

CUBIT> volume 7 1 size 2

CUBIT> volume 7 1 scheme auto

CUBIT> volume 10 scheme sweep source 270
Surinos 270 |target 267

CUBIT> mesh volume 7 1

CUBIT> mesh volume 10

CUBIT> unmerge all
CUBIT> body all copy reflect x

CUBIT> merge all

509

CUBIT 11.0 User Documentation

Final mesh

The entire mesh is copied and reflected around the x axis during the last step. The advantage of symmetry in this
example is that it cuts the decomposition in half, and it also ensures a perfectly symmetrical mesh.

Example 8. Using virtual geometry in geometry
decomposition

Virtual geometry is used to change the properties of mesh without changing the underlying geometry. The next example
uses virtual geometry to remove unwanted sliver curves, and to create a sweepable volume. The composite curve
function is used to combine sliver curves that are created from webcutting a slightly curved surface. Then the partition
surface command is used to create additional partitions on a surface to ensure sweepability.

510

CUBIT 11.0 User Documentation

Suggested webcuts

Webcut Command

CUBIT> webcut volume 1 sweep surface 2 vector 00 -1
through_all

CUBIT> webcut volume 3 sweep surface 108 vector 00 -1
through_all

511

CUBIT 11.0 User Documentation

CUBIT> webcut volume 3 sweep surface 13 vector 00 -1
through_all

CUBIT> webcut volume 3 sweep surface 28 vector 00 -1
through_all

CUBIT> webcut volume 3 sweep surface 74 vector 00 -1
through_all

CUBIT> webcut volume 3 with sheet extended from surface
197

CUBIT> webcut volume 8 with sheet extended from surface
224

512

CUBIT 11.0 User Documentation

CUBIT> webcut volume 11 10 12 9 with plane surface 28

CUBIT> webcut volume 3 with plane normal to curve 116
fraction 0.5

CUBIT> webcut volume 3 17 with plane normal to curve 835
close_to vertex 487

CUBIT> webcut volume 18 19 with sheet extended from
surface 376

513

CUBIT 11.0 User Documentation

CUBIT> webcut volume 3 17 with sheet extended from
surface 378

CUBIT> webcut volume 8 with sheet extended from surface
73

CUBIT> webcut volume 8 with sheet extended from surface
72

CUBIT> webcut volume 8 with sheet extended from surface
133

¥ |CUBIT>webcut volume 8 with sheet extended from surface
71

CUBIT> webcut volume 8 with plane vertex 709 vertex 713
vertex 702

514

CUBIT 11.0 User Documentation

CUBIT> unite volume 36 45

CUBIT> unite volume 37 43

CUBIT> unite volume 35 44

CUBIT> unite volume 39 42

CUBIT> webcut volume 29 with plane vertex 81 vertex 93
vertex 154

CUBIT> unite volume 33 36 50 11

CUBIT> unite volume 10 49 37 31

CUBIT> unite volume 12 52 35 34

CUBIT> unite volume 9 51 39 32

CUBIT> unite volume 9 22

CUBIT> unite volume 12 23

CUBIT> unite volume 20 33

CUBIT> unite volume 21 10

515

CUBIT 11.0 User Documentation

516

olurne 55

CUBIT> webcut volume 12 with plane vertex 86 vertex 71
vertex 76

CUBIT> webcut volume 53 with plane vertex 738 vertex 87
vertex 741

CUBIT> webcut volume 12 with plane vertex 72 vertex 85
vertex 74

CUBIT> webcut volume 55 with plane vertex 754 vertex 205
vertex 208

CUBIT> webcut volume 12 sweep surface 731 along curve
1073 through_all

CUBIT> unite volume 53 57 56

CUBIT> unite volume 54 12 55

CUBIT> webcut volume 9 with plane vertex 99 vertex 101
vertex 103

CUBIT> webcut volume 58 with plane vertex 769 vertex 98
vertex 772

CUBIT> webcut volume 9 with plane vertex 106 vertex 104
vertex 100

CUBIT> webcut volume 60 with plane vertex 781 vertex 201
vertex 198

CUBIT> webcut volume 9 sweep surface 764 along curve
1078 through_all

CUBIT> unite volume 58 62 60

CUBIT> unite volume 59 9 61

CUBIT> webcut volume 20 with plane vertex 140 vertex 138
vertex 135

CUBIT> webcut volume 63 with plane vertex 139 vertex 137
vertex 134

CUBIT> webcut volume 20 with plane vertex 141 vertex 800
vertex 796

CUBIT> webcut volume 64 with plane vertex 803 vertex 220
vertex 223

CUBIT> webcut volume 63 sweep surface 803 along curve
1238 through_all

CUBIT> unite volume 20 67 66

CUBIT> unite volume 65 63 64

CUBIT> webcut volume 21 with plane vertex 165 vertex 163
vertex 160

CUBIT> webcut volume 68 with plane vertex 164 vertex 162
vertex 159

CUBIT> webcut volume 21 with plane vertex 825 vertex 169
vertex 822

CUBIT> webcut volume 69 with plane vertex 830 vertex 216
vertex 213

CUBIT> webcut volume 68 sweep surface 836 along curve
1069 through_all

CUBIT> unite volume 21 72 69

CUBIT> unite volume 70 68 71

These are the steps to webcut each of the stiffeners into the
configuration shown. It is repeated for each of the stiffeners. This
is also the step which creates the sliver curves which must be
composited out later.

CUBIT 11.0 User Documentation

CUBIT> webcut volume 70 65 59 54 with plane surface 2

Valurne
714

d/olurne
Fés)

CUBIT> unite volume 1 76 75 73 74

CUBIT> unite volume 28 47 46 41 48 38 8 30 29 40

517

CUBIT 11.0 User Documentation

CUBIT> webcut volume 28 with plane surface 870
CUBIT> webcut volume 28 77 with plane surface 871
CUBIT> webcut volume 28 77 with plane surface 878

CUBIT> webcut volume 28 77 with plane surface 879

s | G407

CUBIT> webcut volume 1 81 2 82 with plane normal to curve
1849 fraction 0.5

CUBIT>webcut volume 19 18 with plane normal to curve 843
fraction 0.75

518

CUBIT 11.0 User Documentation

CUBIT> create curve vertex 1122 vertex 471 on surface 1134

Fedrries 158

CUBIT> webcut volume 18 with sheet extended from surface
1135

CUBIT> unite volume 91 92

CUBIT> delete curve 2073

519

CUBIT 11.0 User Documentation

CUBIT> unite volume 89 18
CUBIT> unite volume 88 19
CUBIT> imprint all

CUBIT> merge all

Curve 1456 : Composite small curves formed from webcuts

CUBIT> composite create curve 1456 1468
CUBIT> composite create curve 1459 1467
CUBIT> composite create curve 1499 1511
CUBIT> composite create curve 1502 1510
CUBIT> composite create curve 1371 1379
% CUBIT> composite create curve 1370 1381
A |CUBIT> composite create curve 1423 1413
CUBIT> composite create curve 1422 1414
000 p = elfs | | CUBIT> volume all scheme auto

eI 2517
Create the partitioned curves shown using existing vertices

CUBIT> partition create surface 1067 vertex 311 175
CUBIT> partition create surface 1067 vertex 174 312
CUBIT> partition create surface 1063 vertex 123 294
CUBIT> partition create surface 1251 vertex 170 226
CUBIT> partition create surface 1082 vertex 195 115
CUBIT> partition create surface 1082 vertex 242 116
CUBIT> partition create surface 1077 vertex 117 309
CUBIT> partition create surface 1255 vertex 118 310

520

CUBIT 11.0 User Documentation

Meshing order is significant in this case. Since meshing a volume
will hard set the interval counts on curves and surfaces, you will
need to make sure that all of the interval counts are the same on
adjacent volumes. Usually the meshing algorithm can handle this
interval matching, but sometimes it helps to mesh volumes in a
certain order. In this case, the meshing order also significantly
changes the quality in the resulting mesh.

CUBIT> reset volume all

CUBIT> volume all scheme auto

CUBIT> volume 81 scheme sweep source surface 979 target
surface 1061 rotate off

CUBIT> volume 81 sweep smooth auto

CUBIT> volume 85 scheme sweep source surface 1061 target
surface 889 rotate off

CUBIT> volume 85 sweep smooth auto

CUBIT> volume all size 0.1

CUBIT> curve 2125 2122 interval 12

CUBIT> mesh vol 56 7 13 14 15 16 (COLORED GREEN)
CUBIT> mesh Volume 85 81 77 83 78 82 87 28 80 79
(COLORED RED)

CUBIT> mesh vol 88 89 91 90 17 3 (COLORED YELLOW)
CUBIT> mesh volume with not is_meshed (COLORED
WHITE)

Final mesh

The final mesh is shown below.

521

CUBIT 11.0 User Documentation

Example 9. Sweeping volumes with narrow angles
and surfaces

Narrow angles are a challenge for sweeping algorithms. In the next example, a well-placed webcut shaves off the end of
the small angle to create an additional surface for the sweeping algorithm.

Suggested webcuts

Webcut Command

CUBIT> webcut volume 1 with sheet extended from
surface 16

522

CUBIT 11.0 User Documentation

CUBIT> webcut volume 5 with plane surface 50

CUBIT> webcut volume 4 with plane surface 47

CUBIT> webcut volume 3 with sheet extended from
surface 36

523

CUBIT 11.0 User Documentation

CUBIT> webcut volume 2 with plane surface 25

CUBIT> unite volume 397

Furlaces 15

CUBIT> webcut volume 5 with sheet extended from
surface 13

524

CUBIT 11.0 User Documentation

CUBIT> webcut volume 5 with sheet extended from
surface 69

urri= 4 |CUBIT> webcut volume 4 with sheet extended from
surface 13

525

CUBIT 11.0 User Documentation

CUBIT> webcut volume 4 with sheet extended from
SUUE S gyrface 69

CUBIT> webcut volume 5 with plane vertex 23 vertex 25
vertex 31

526

CUBIT 11.0 User Documentation

CUBIT> webcut volume 4 with plane vertex 23 vertex 25
vertex 31

feitay 18

CUBIT> webcut volume 16 with plane vertex 18 vertex 9
vertex 33

CUBIT> webcut volume 17 with plane vertex 18 vertex 9
vertex 33

527

CUBIT 11.0 User Documentation

CUBIT> webcut volume 6 with plane normal to curve 26
distance 0.6 from vertex 25

CUBIT> delete volume 20

528

CUBIT 11.0 User Documentation

CUBIT> webcut volume 8 with plane normal to curve 33
distance 0.6 from vertex 31

CUBIT> delete volume 8

529

CUBIT 11.0 User Documentation

CUBIT> unite volume 321 6

CUBIT> imprint volume all
CUBIT> merge volume all
CUBIT> volume all size 0.3
CUBIT> volume all scheme auto

Siwfoce 13

CUBIT> volume 2 scheme sweep source 13 target 69
CUBIT> volume 2 sweep smooth auto

CUBIT> unmerge volume all

530

CUBIT 11.0 User Documentation

CUBIT> webcut volume 2 3 with plane zplane

Surfrce 154
18 CUBIT> webcut volume 3 with sheet extended from
surface 154

531

CUBIT 11.0 User Documentation

CUBIT> webcut volume 23 with sheet extended from
surface 153

CUBIT> webcut volume 11 with plane zplane noimprint
nomerge

CUBIT> imprint volume all

CUBIT> merge volume all

CUBIT> volume 11 scheme sweep source surface 221
target surface 222 rotate off

CUBIT> volume 11 sweep smooth auto

532

CUBIT 11.0 User Documentation

CUBIT> volume 28 scheme sweep source surface 222
target surface 221 rotate off

CUBIT> volume 28 sweep smooth auto

oM

CUBIT> volume 22 scheme sweep source surface 176
target surface 179 rotate off

CUBIT> volume 22 sweep smooth auto

CUBIT> volume 2 scheme sweep source surface 173
target surface 170 rotate off

CUBIT> volume 2 sweep smooth auto

CUBIT> volume 24 scheme sweep source surface 204
target surface 202 rotate off

CUBIT> volume 24 sweep smooth auto

533

CUBIT 11.0 User Documentation

Surfres 205

rie 25
Surfoice 207

CUBIT> volume 25 scheme sweep source surface 205
target surface 207 rotate off

CUBIT> volume 25 sweep smooth auto

LIrris 24

Surfoles 216

CUBIT> volume 26 scheme sweep source surface 214
target surface 216 rotate off

CUBIT> volume 26 sweep smooth auto

CUBIT> volume 27 scheme sweep source surface 217
target surface 219 rotate off

CUBIT> volume 27 sweep smooth auto

534

CUBIT 11.0 User Documentation

alurns 3

CUBIT> volume 3 scheme sweep source surface 197
187 target surface 200 rotate off

CUBIT> volume 3 sweep smooth auto

urloss 155

CUBIT> volume 23 scheme sweep source surface 212
193 target surface 210 rotate off

CUBIT> volume 23 sweep smooth auto
CUBIT> volume all scheme auto
CUBIT> volume all size 0.2

CUBIT> mesh volume all

Final mesh

The final mesh is shown below.

535

CUBIT 11.0 User Documentation

536

CUBIT 11.0 User Documentation

Geometry Cleanup Process Flow

C orrect walidate
Emrors Manually
(Twvreak)

Healer

PMeasure small surfaces
and curves

Small curves.,
surfaces
i moder®

S

Remowe small
curves/surfaces
(Real
operaticons.
regulariz e
and tweak)

hMeasure wvolum e owverlap |

| Imprint 2 Merge |

|

| Find Surface |

Owveriap

L

Pair

L

INntersect
owverlapping pair

+

Tweak s don’t
Swerlap

+

Delete unnecsded

wvolumes

C opy owverdapping

For each
owverlaping pair

Im print or tweak

Reset & ImMport
Sawved hViodel

bBaetwean
identified volumes

L

Determ ine and set
Appropriate merge
tolerance

T olerant Im e rint
&2 Merge

Firnnd Surface
Owerlap

Reset & IMport
S awved WMiodel

Identifry volumes
and locaticons
of remaining

suIface overlaps

Do localized M pPprint

Find Small Features
writh P oww aerto ol

ANy small
features=

Sizing

| S et rlesh |

| T et vMiesh |

Srtweaks
at surface owverlaps

wirtual collapse
surface. edge. angle
AN d/or com posite
operatons

537

CUBIT 11.0 User Documentation

Appendix

Examples
Alpha Commands

Available Colors

Element Numbering

FullHex vs. NodeHex Representation
APREPRO

FASTQ

Periodic Space-filling Models (Tile)

Troubleshooting
References

Examples

General Comments

Simple Internal Geometry Generation
Octant of Sphere

Box Beam

Thunderbird 3D Shell

Advanced Tutorial

The purpose of this Appendix is to demonstrate the capabilities of CUBIT for finite element mesh generation as well as
provide a few examples on the use of CUBIT. Some examples also demonstrate the use of the ACIS test harness as well
as other related programs. This Appendix is not intended to be a step-by-step tutorial.

General Comments

The examples in this appendix show the use of CUBIT under various scenarios. To reproduce these examples, the user
would need the journal files containing the CUBIT commands described below, and in some cases an ACIS SAT file
containing model geometry. The journal files and SAT files necessary for running these examples are available from the
CUBIT web site. For examples not requiring SAT files, the user can also type in the commands described for that
example.

The examples in this appendix each cover several of CUBIT's mesh generation capabilities. The CUBIT features
exercised by each example are shown in the table below:

Example Geometry Features Surface Meshing Features Volume Meshing
Features

Internal Primitives, Booleans Interval Assignment, Paving Sweeping, Submapping

Geometry

Sphere Octant |Primitives, Booleans, Interval Assignment, Paving, |Sweeping, Submapping,

Decomposition, Merging Triangle Tool, Smoothing Tetrahedron

Box Beam Primitives, Merging Interval Assignment, Mapping

Thunderbird Primitives, Booleans Interval Assignment, Paving

Advanced Decomposition, Merging Interval Assignment, Mapping, |Sweeping, Submapping,

Tutorial Paving, Smoothing Mapping

538

CUBIT 11.0 User Documentation

Example:Simple Internal Geometry Generation

This simple example demonstrates the use of the internal geometry generation capability within CUBIT to generate a
mesh on a perforated block. The geometry for this case is a block with a cylindrical hole in the center. It illustrates the
brick, cylinder, subtract, pave and translate commands and boolean operations. The geometry to be generated is shown
in Figure 1. This figure also shows the curve and surface labels specified in the CUBIT journal file. The final meshed body
is shown in Figure 2. The CUBIT journal file follows. Note that the test of the journal file can be directly copied and pasted
into the CUBIT command line.

Internal Geometry Generation Example
Brick Width 10. Depth 10. Height 10. # Create Cube
Cylinder Height 12. Radius 3. # Create cylinder through Cube
View From 15 20 25 # Move to new Viewpoint
Display # You may want to move to graphics window to mouse

around to get the feel for it
Subtract 2 From 1 # Remove cylinder from cube--create hole
Body 1 Size 1.0 # Default element size for model
Label Curve On
Label Surface On # Turn on curve and surface labels for

scheme and size specification
Display
Surface 10 Interval 10 # Change intervals on cylinder surface
Curve 15 to 16 Interval 20 # Change intervals around
cylinder circle

Surface 11 Scheme Pave # Front surface paved
Volume 1 Scheme Sweep Source 11 Target 12

Remainder of block will be meshed by

sweeping front surface to back surface
Mesh Volume 1 # Create the mesh
Graphics Mode Hiddenline # Hiddenline view of cube (Figure 2)

The first two lines create a 10 unit cube centered at the origin and a cylinder with radius 3 units and height of 12 units also
centered at the origin. The cylinder height is arbitrary as long as it is greater than the height of the brick. The subtract
command then performs the boolean by subtracting the cylinder (body 2) from the block (body 1) to create the final
geometry (body 1). The remainder of the commands simply assign the desired number of intervals and then generate the
mesh. Note that since the cylindrical hole is a "periodic surface," there are no edges joining the two curves so the number
of intervals along its axis must be set by the surface interval command.

Curve Labals Surface Labels

Figure 1. Geometry showing curve and surface entity Ids.

539

CUBIT 11.0 User Documentation

Figure 2. Geometry meshed with paving and sweeping schemes.

Meshing with Autoscheme

The above example is a useful example of manually setting intervals and meshing schemes. CUBIT's autoscheme feature
simplifies the necessity to pick individual curves and surfaces and set individual meshing schemes. The following set of
commands demonstrates the use of autoscheme to generate the same mesh. Note that not all geometries can
successfully use the autoscheme feature:

Internal Geometry Generation Exanple with Autoschene

Brick Wdth 10. Depth 10. Height 10. # Create Cube

Cylinder Height 12. Radius 3. # Create cylinder through Cube
Subtract 2 From 1 # Renove cylinder from cube--create hole
Body 1 Size 1.0 # Default el enent size for nodel

Di spl ay

Volume 1 Scheme Auto # Let CUBI T choose the schene

Mesh Volune 1 # Create the nesh

Graphi cs Mbde Hiddenline # Hiddenline view of cube (Figure 2)

Example: Octant of a Sphere

This example also illustrates the internal geometry generation capabilities of CUBIT to generate an octant of a sphere.
The procedure used is to generate the octant by creating a sphere only on the positive quadrant of the reference frame.
Two methods of meshing are demonstrated in this example: one is to decompose the octant into two volumes - a central
"core" and an outer "peel" which are both meshable using the sweep schemes. The second is to mesh the octant with the
triprimitive and tetprimitive meshing schemes. This example uses the sphere, webcut, merge, auto, triprimitive, tetprimitive
and smooth commands.

The following annotated CUBIT journal file will generate the meshes shown in Figure 1

540

CUBIT 11.0 User Documentation

Create an octant of a sphere on the positive quadrant

Sphere Radius 10.0 xpos ypos zpos #create the octant

Webcut Body 1 Cylinder Radius 4 Axis z Noimprint Nomerge
Coalesce redundant surfaces

Merge All

Volume 3 Size 0.4999

Volume 1 Size 0.6

Volume all Scheme Auto # Use auto to set meshing schemes

List Volume 1 #List the volume to see the schemes

List Volume 3 #List the volume to see the schemes

Mesh Volume all

Now try it with the tetrahedron this way

Reset

Sphere Radius 10. xpos ypos zpos # Create an octant

The tetprimitive scheme will mesh a tetrahedron with hexes
Volume 1 Scheme Tetprimitive # Mesh the volume with scheme tetprimitive
Surface All Scheme Triprimitive # Surfaces must be scheme triprimitive
Volume 1 size 0.7 # Set an interval size

Mesh Surface all # First mesh the surfaces

Smooth Surface all # Scheme Triprimitive often requires smoothing
Mesh Volume 1 # Mesh the volume

Export Genesis'Octant.gen’ # Write out the mesh

Figure 1. Octant of a Sphere Example Output

Example: Box Beam

A simple example using CUBIT is the box beam buckling problem shown in Figure 1. A description of an analysis which
uses this type of mesh is found in (Lovejoy, 90). This example uses the merge, nodeset and block commands and the
mapping mesh generation scheme. The geometry is generated inside of CUBIT using APREPRO commands and
variables. The geometry file is as follows:

File: boxBeamGeom.jou

Side = {Side = 1.75}

Height = {Height = 12.0}

Upper = {Upper = 2.0}

Brick Width {Side/2.0} depth {Side/2.0} height {Height-Upper}
Body 1 name "lowerSection”

Brick Width {Side/2.0} depth {Side/2.0} height {Upper}
Body 2 name "upperSection"”

Move lowerSection xyz {Side/4.0} {Side/4.0} {(Height-
Upper)/2.0}

Move upperSection xyz {Side/4.0} {Side/4.0} {Upper/2.0 +
Height - Upper}

Export acis "boxBeam.sat" #Save the file to SAT

541

CUBIT 11.0 User Documentation

Figure 1. Box beam buckling example

In this example, it is assumed that subsequent analyses will take advantage of the problem symmetry and therefore only
one-quarter of the box beam will be meshed. It is worth noting that there are a variety of ways to construct a solid model
for this problem; however, experience thus far with ACIS and CUBIT indicates that the easiest way to model the box beam
is to use ACIS block primitives. (Note that this geometry can also be generated using the internal CUBIT Brick primitive)
Even though subsequent meshing will only be performed on the faces of the solid model, the entire 3D body is saved as
an ACIS.sat file. The CUBIT journal file for the box beam example is:

File: boxBeam.jou

Thickness = {Thickness = 0.06}

Crease = {Crease = 0.01}

XYInts = {XYInts = 10}

Zints = {ZInts = 90}

Upperints = {Upperints = 15}
Import Acis 'boxBeam.sat'

Merge All

Label Surface on

Label Curve on

Display

Curve 1 To 8 Interval {XYInts}
Curve 13 To 16 Interval {XYInts}
Curve 9 To 12 Interval {ZInts-Upperints}
Curve 21 To 24 Interval {Upperints}
Mesh Surface 3

Mesh Surface 6

Mesh Surface 9

Mesh Surface 12

NodeSet 1 Curve 1

NodeSet 2 Curve 4

NodeSet 1 Move {-Crease} 0 0
NodeSet 2 Move 0 {Crease} 0
Block 2 Surface 3

Block 2 Surface 6

Block 1 Surface 9

Block 1 Surface 12

Block 1 To 2 Attribute {Thickness}
Export Genesis 'boxBeam.exoll’

Quit

Commands worth noting in the CUBIT journal file include:

542

CUBIT 11.0 User Documentation

Block, Block Attribute

Allows the user to specify that shell elements for the surfaces of the solid model are to be written to the output
(EXODUSII) database, and that shell elements be given a thickness attribute. This is necessary since CUBIT defaults to
three-dimensional hexahedral meshing of solid model volumes.

NodeSet Move

Allows the user to actually move the specified nodes by a vector (Ax, Ay, Az). This is advantageous for the buckling
problem, since the numerical simulation requires a small "crease" in the beam in order to perform well.

Merge
Allows the user to combine geometric features (e.g. edges and surfaces).

Other commands in the journal file should be straightforward. Since the problem is sufficiently simple to mesh using a
mapping transformation, specification of a meshing "scheme" is unnecessary (mapping is the default in CUBIT).

Finally, note that both the CUBIT journal files (boxBeamGeom.jou and boxBeam.jou) contain macros that are evaluated
using APREPRO. The makefile is used to semi-automatically generate the mesh is given below. While this particular
example is a trivial use of the software, it does serve to demonstrate a few of the capabilities offered by CUBIT.

File: Makefile

boxBeam.g: boxBeam.exoll

ex2exlv2 boxBeam.exoll boxBeam.g
boxBeam.exoll: boxBeam.sat boxBeam.jou
cubit -batch -nographics boxBeam.jou
boxBeam.sat: boxBeamGeom.jou

cubit -batch -nographics boxBeamGeom.jou
boxBeam.jou: boxBeam.jou

clean:

@-rm *.sat *.exoll *.g

Example: Thunderbird

This example is the three-dimensional paving of a shell shown in Figurel. The 2D wireframe geometry of the thunderbird
is given by the following FASTQ file:

543

CUBIT 11.0 User Documentation

Figure 1. Sandia Thunderbird 3D shell

#File: third.fsq
TITLE
MESH OF SANDIA THUNDERBIRD

$ block {e = .2} int= {isq = 20}

$ number of elements in block thick {iblkt = 5} block thickness {blkt=.2 }
$ block angle {angle=15}

$ magnification factor = {magnificationFactor=1.0}

$ bird {bthick = .018} {ithick = 3} {idepth = 20}

$ {pi = 3.14159265359} {rad=magnificationFactor/pi} {bdepth=1.}
$ preferred normalized element size = {elementSize=0.06}

$ number of intervals along outside edges =

$ {border_int=5} {corner_int=10} {side_int=20}

$ {outsidelntervals= 2*corner_int+side_int}

$ {boxTop=.2} {topIntervals = 8}

$ {insideCurvelnt=8}
$ {MAG=magnificationFactor/3.0}

$ {middlelnside=MAG*0.97}

$ {xCurveStartinside=MAG*0.60}
$ {yCurveStartinside=MAG*0.93}
$ {curveMiddlelnside=MAG*0.81}

$ {xCurveStartOutside=MAG*0.75}
$ {yCurveStartOutside=MAG*1.17}
$ {middleOutside=MAG*1.20}

$ {curveMiddleOutside=MAG*1.01}
$ {boundingBox = MAG*1.5}

$ Thunderbird Coordinates

544

CUBIT 11.0 User Documentation

POINT 1 {MAG*-.40} {MAG*.78}
POINT 2 {MAG*-.40} {MAG*.59}
POINT 3 {MAG*-.22} {MAG*.59}
POINT 4 {MAG*-.22} {MAG*.40}
POINT 5 {MAG*-.75} {MAG*.40}
POINT 6 {MAG*-.78} {MAG*-.09}
POINT 7 {MAG*-.75} {MAG*- 58}
POINT 8 {MAG*-.53} {MAG*-.60}
POINT 9 {MAG*-.54} {MAG*-.23}
POINT 10 {MAG*-.42} {MAG*-.23}
POINT 11 {MAG*-.42} {MAG*.07}
POINT 12 {MAG*-.24} {MAG*.07}
POINT 13 {MAG*-.27} {MAG*-.80}
POINT 14 {MAG*.27} {MAG*-.80}
POINT 15 {MAG*.24} {MAG*.07}
POINT 16 {MAG*.42} {MAG*.07}
POINT 17 {MAG*.42} {MAG*-.23}
POINT 18 {MAG*.54} {MAG*-.23}
POINT 19 {MAG* 53} {MAG*-.60}
POINT 20 {MAG*.75} {MAG*-.58}
POINT 21 {MAG*.78} {MAG*-.09}
POINT 22 {MAG*.75} {MAG*.40}
POINT 23 {MAG*.22} {MAG*.40}
POINT 24 {MAG*.21} {MAG*.78}
POINT 25 {MAG*0.0} {MAG*.80}

$ lines for Third

LINE1STR12
LINE2STR23
LINE3 STR34
LINE4STR45
LINE5CIRM576
LINE6 STR78
LINE7 STR 89
LINE 8 STR9 10
LINE9 STR10 11
LINE10STR 11 12
LINE11 STR 1213
LINE 12 STR 13 14
LINE 13 STR 14 15
LINE 14 STR 15 16
LINE 15 STR 16 17
LINE 16 STR 17 18
LINE 17 STR 18 19
LINE 18 STR 19 20

LINE 19 CIRM 20 22 21

LINE 20 STR 22 23
LINE 21 STR 23 24

LINE22STR241071.0

$ REGIONS

SIZE {elementSize*MAG}

REGION11-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15*
-16 -17 -18 -19 -20 -21 -22

SCHEME 0 X
BODY 1
EXIT

A command interpreter has been developed inside CUBIT to convert FASTQ geometry into CUBIT's modeling system

(ACIS). The previous file, tbird.fsq, can be read into CUBIT by the command:

Import Fastq "<file_name>"

The file can be read into CUBIT and converted from a 2D "sheet" body to a 3D solid, by the following commands:

545

CUBIT 11.0 User Documentation

#File: tbird3dGeom.jou

import fastq "tbird.fsq"

cylinder radius.5 height 1.25

rotate body 2 about x angle 90

sweep surface 1 vector 0 0 1 distance 1
intersect body 3 with body 2

export acis "tbird3d.sat"

Example: Advanced Tutorial

The objective of this example is to illustrate the use of some advanced meshing operations to mesh a more complex
geometry. The example purposely does not do everything right the first time to demonstrate the thought process a user
would go through when meshing a real part for the first time. This example demonstrates the use of webcut to decompose
the model into sweepable volumes, manually setting meshing schemes when scheme auto fails for certain volumes and
matching intervals to ensure meshing scheme constraints are met. It should be noted that the sequence of commands is
important to successfully generate the meshed model. It is recommended that the user first perform all the decomposition
on the model, then imprint the entire model. Imprinting ensures that the topology of adjacent bodies match so that correct
merging of adjacent surfaces can be performed. Next, use the merge all command to merge the common surfaces and
ensure a contiguous mesh throughout the model. It is important to watch the merge all command output, since during
typical merge all operations, all of the curves and vertices will be merged during the surface merging. Thus unless
specifically desired, curve and vertex merging messages should not be seen from this command. If these are reported
during the execution of the command, it may indicate invalid topology (remedied by an imprint all) or some other invalidity
in the model. Performing an imprint all after the merge all may corrupt the data base; the user should not perform
geometry operations after the merge command. Next, set the element size (e.g. volume all size 15) then the meshing
schema (e.g. volume all scheme auto). The regime is finished when the mesh command is issued. Setting up BC's and
Element Blocks are not covered in this tutorial.

The command 'set default names on' assigns nhames to the geometric entities. These names are saved with the geometry
when the file is saved and also remain constant within code revisions. Throughout the session, each entity will acquire
multiple names and any name given for each entity is valid for identification.

The ACIS SAT file for this tutorial can be obtained by contacting the cubit development team cubit-dev@sandia.gov

Figure 1. Geometry of Advanced Tutorial

The geometry used in this example is shown in Figure 1 above. The journal file for this exercise is given in the following
file:

@advanced tutorial.jou

The resulting mesh is shown in Figure 2.

546

CUBIT 11.0 User Documentation

Figure 2. Mesh of Advanced Tutorial Problem

Alpha Commands

CUBIT has several functions that are currently in development and are considered "Alpha" features. These features can
be can be accessed or hidden within Cubit by typing the following command:

Set developer commands {on|OFF}

The commands that are currently developer commands are:

e Automatic Detail Suppression
e Automatic Geometry Decomposition
. Feature Size

® Optimize Jacobian

. Mesh Cutting

. Mesh Grafting

. Randomize Smoothing

. Refine Mesh Boundary

e Sculpting

e Super Sizing Function

e Test Sizing Function

e Triangle Mesh Coarsening

e Transition

e Whisker Weave

Automatic Detail Suppression

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Geometry models often have small features, which can be difficult to resolve in a mesh. In fact, these features are

sometimes too small to see, and are revealed only when the user attempts to mesh the geometry. Automatic detail
suppression identifies and removes the following types of features from the geometric model:

547

CUBIT 11.0 User Documentation

e valence-2 vertices
e short edges
(] small faces

Details are removed using virtual geometry , which means they can be restored later if desired.

There are several stages to the automatic detail suppression process, all of which can be controlled separately by the
user. Small details are identified using the command:

Detail <ref entity list> [identify] [dimension <dim> [only]]

The results are placed in a series of groups named "detail_vertices", "detail_edges", "detail_faces" and "detail_volumes".
These details can be drawn or highlighted using the normal group commands:

Draw {detail_vertices | detail_edges | detail_faces | detail_volumes}

Highlight {detail_vertices | detail_edges | detail_faces | detail_volumes}
Or by using the following command:

Detail <ref entity list> draw [dimension <dim> [only]]
Details are removed automatically from the model using the command:

Detail <ref entity list> remove [dimension <dim> [only]]
The dimension option is used to identify the maximum dimension of entities examined for small detail identification
(<dim>is 3, 2, 1 for volumes, surface, and curves, respectively). If the only identifier is specified, only entities of the
specified dimension are examined, otherwise that dimension and all lower dimensions are examined.
In some cases, details are identified which the user would like to retain in the model; likewise, the algorithm used to
identify small details sometimes misses small details the user would like removed from the model. To include or exclude

geometric entities from the list of small details to be removed, the following command is used:

Detail <ref entity list> [include | exclude]

Example

Shown below is a model of a game die meshed with identical mesh size, with details included (left) and removed (right).

Note: "Small" Measurement

548

CUBIT 11.0 User Documentation

Automatic detail suppression identifies "small" geometric entities by comparing their "size" to the mesh size assigned by
the user to the entity. Anything smaller than that size is identified as being a detail and put in the appropriate detail group
(e.g. detail_faces, detail_edges, etc.). The size of an edge is simply its arc length; surfaces and volumes are measured
using the "hydraulic diameter" (see next note).

Note: Hydraulic Diameter
The hydraulic diameter of a surface is computed as 4.0*A/P, where A is the surface area and P is the summed arc lengths
of all bounding curves. For circles, the hydraulic diameter is the circle diameter; for squares, it is the length of the

bounding curves. Similarly, for volumes, the hydraulic diameter is computed as 6.0*V/A, which evaluates to the diameter
and bounding curve length for perfect spheres and cubes, respectively.

Automatic Geometry Decomposition

Note: This feature is under development. The command to enable or disable features under development is:

Set developer commands {on|OFF}
In many cases, model geometry includes protrusions which, when cut off using geometry decomposition, are easily
meshable with existing algorithms. CUBIT includes a feature-based decomposition capability, which automates this
process. This algorithm operates by finding concave curves in the model, grouping them into closed loops, then forming
cutting surfaces based on those loops. Although this algorithm is still in the research stage, it can be useful for automating
some of the decomposition required for typical models.
To automatically decompose a model, use the command

Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]

If the Trace option is used, the algorithm prints progress information as decomposition progresses. The Depth option
controls how many cuts are made before the algorithm returns; by default, the algorithm cuts the model wherever it can.

Automatic decomposition is used to decompose the model shown in Figure 1 (left), with the results shown in Figure 1
(right). In this case, automatic decomposition performs all but one of the required cuts.

549

CUBIT 11.0 User Documentation

Figure 1. Model where automatic decomposition was utilized.

FeatureSize

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Applies to: Curves

Summary: Meshes a curve based on its proximity to nearby geometry and size of nearby geometric features. This is an
alpha feature and should be used with caution.

Syntax:

Curve <range> Scheme Featuresize
Related Commands:

Curve <range> Density <density_factor>
Discussion:
The user may also automatically bias the mesh from small elements near complicated geometry to large elements near
expanses of simple geometry. Meshing a curve with scheme featuresize places nodes roughly proportional to the distance
from the node to a piece of geometry that is foreign to the curve. Foreign means that the geometric entity doesn't contain
the curve, or any of its vertices (ie. the entity's intersection with the curve is empty). It is known that featuresize is a

continuous function that varies slowly. Featuresize meshing is very automatic and integrated with interval matching.
Featursesize meshing works well with paving, and in some cases with structured surface-meshing schemes (map,

submap) as well.

If desired, the user may specify the exact or goal number of intervals with a size or interval command, and then the
featuresize function will be used to space the nodes.

The featuresize function may also be scaled by the user to produce a finer or coarser mesh using the density command
as follows:

Curve <range> Density <density_factor>
The default scaling factor or density is 1. Higher densities also reduce the transition rate of the node spacing. A density of

2 usually gives a good quality mesh. A density below about 0.5 could produce rapid transitions and poor mesh quality.
The following shows an example of different density values when using the featuresize scheme.

1

Paved, density 1 Paved, density 2 Submapped, density 1
Mesh Cutting

Note: This feature is under development. The command to enable or disable features under development is:

Set developer commands {on|OFF}

550

CUBIT 11.0 User Documentation

The term "mesh cutting" refers to modifying an existing mesh by moving nodes to a cutting entity and modifying the
connectivity of the mesh so that the original mesh fits a new geometry. The behavior of mesh cutting is intended to be
similar to web cutting in that the process results in a decomposition of the original geometry. The difference is that the
decomposition is performed on meshed geometry and results in the creation of virtual geometry partitions. The underlying
acis body remains unchanged. The user has the option to determine what is partitioned during mesh cutting: the volume,
the surfaces only, or nothing.

The current scope of mesh cutting is limited to cutting hex meshed volumes with planes and extended surfaces. These
cutting entities are also limited in that mesh cutting will not work if they pass through a vertex at the end of more than two
curves. Mesh cutting does not work on tet meshes or surface meshes.

The steps of mesh cutting include:

e Create a starting mesh. This mesh is typically simpler than the desired final mesh and can be created with
sweeping, mapping, or some other available meshing algorithm. Currently, the starting mesh must be a single
volume: mesh cutting does not handle merged volumes or assemblies.

e Create a cutting entity that can be used to capture the new detail in the mesh. Currently, mesh cutting works
with planes or sheets extended from surfaces. It is important to note that if an extended surface is used, mesh
cutting will not capture any geometric features (curves or vertices) of the surface.

® |ssue the command to cut the mesh. The meshcut commands are similar in syntax and behavior to the webcut
commands.

The following entities with the associated commands are available for mesh cutting:

Coordinate Plane

A coordinate plane can be used to cut the model, and can optionally be offset a positive or negative distance from its
position at the origin.

Meshcut Volume <range> Plane {xplane|yplane|zplane} [offset <dist>]

The planar surface to be used for mesh cutting can also be previewed using the Draw Plane command.

Planar Surface
An existing planar surface can also be used to cut the model.
Meshcut Volume <range> Plane Surface <surface_id>

The planar surface to be used for mesh cutting can also be previewed using the Draw Plane command.

Plane from 3 points
Any arbitrary planar surface can be used by specifying three nodes that define the plane.

Meshcut Volume <range> Plane Node <3_node_ids>

Extended Surface

An extended surface or "sheet" can also be used for mesh cutting. In this case, the sheet is not restricted to be planar and
will be extended in all directions possible. When cutting with an extended surface mesh cutting will ignore all curves and
vertices of the surface. Also, the resolution of the mesh will determine how well curved surfaces are captured with
meshcutting. A surface with high curvature will not be captured accurately with a coarse mesh. Note that some spline
surfaces are limited in extent and may not give an expected result from mesh cutting.

Meshcut Volume <range> Sheet [Extended From] Surface <surface_id>

Note: When cutting with surfaces extended from composite surfaces the default underlying surface approximation may
result in a poor final mesh for mesh cutting. This problem can be fixed using the following command:

Composite closest_pt surface <id>gme

See the discussion on composite geometry for a more detailed description of this command.

551

CUBIT 11.0 User Documentation

Meshcut Options

The following options can be used with all the meshcut commands:

[PARTITION VOLUME]|partition surface|no_partition]: By default, mesh cutting will create virtual partitions of the
volume being cut to match the cutting entity. This option allows mesh cutting to also create only the surface partitions or
create no partitions for the volume or surfaces.

[no_refine]: This option tells mesh cutting not to refine the mesh around the cutting entity.

[no_smooth]: This option tells mesh cutting not to perform the final smoothing step after the cut has been made.

Meshcutting Scope

The following is a list of the current scope and limitations of meshcutting.

Meshcutting only works on hex meshes.

Meshcutting only works for single volumes. It currently does not handle assembly meshes.
Currently, only planes and extended surfaces can be used as the cutting entity.

Curves and vertices on the cutting entity will not be captured in the mesh.

Meshcutting will not work if the cutting entity passes through a meshed vertex that is at the end of more than
two curves.

® The resolution of the mesh determines how well a non-planar cutting entity will be captured in the resulting
mesh. Small features and high curvature will not be captured by a coarse mesh.

e Spline surfaces are limited in extent and may not give expected results if used as an extended cutting surface.

Meshcutting Example

The figures below show an example of mesh cutting. Figure 1 shows the body that will be meshed. This body is a brick
with intersecting through-holes. The steps to create a mesh for this body are listed below.

552

CUBIT 11.0 User Documentation

Figure 1: The original, unmeshed body

Step 1: Create a starting mesh. Figure 2 below shows the starting mesh for this problem. The commands for this mesh
are:

cubit> create brick x 10

cubit> create cylinder radius 3 z 15
cubit> subtract 2 from 1

cubit> volume 1 scheme sweep
cubit> volume 1 size .75

cubit> mesh volume 1

553

CUBIT 11.0 User Documentation

Figure 2: The starting mesh

Step 2: Create a cutting entity. Figure 3 shows the volume that will be used to cut the mesh. The commands are:

cubit> create cylinder radius 2 z 15
cubit> rotate body 3 about x angle 90

554

CUBIT 11.0 User Documentation

Figure 3: The starting mesh and cutting entity

Step 3: Cut the mesh. Figure 4 shows the new mesh after the original mesh has been cut. At this point we have 3 meshed
volumes. The commands for this step are:

cubit> meshcut vol 1 sheet surface 13
cubit> draw volume 4 5 6

555

CUBIT 11.0 User Documentation

Figure 4: The mesh after meshcutting

Step 4: Final step. Figure 5 shows the final mesh after the mesh of the mesh of the two extra volumes is deleted. The
commands are:

cubit> delete mesh volume 5 6 propagate
cubit> draw volume 4

556

CUBIT 11.0 User Documentation

Figure 5: Final mesh after deleting unneeded elements

Mesh Grafting

Note: This feature is under development. The command to enable or disable features under development is:

Set developer commands {on|OFF}

Grafting is used to merge a meshed surface with a dissimilar unmeshed surface. In the process, the location of the nodes
on the meshed surface will be adjusted to fit to the bounding curves of the unmeshed surface and the connectivity of the
original mesh may be changed to improve the final quality of the mesh. This allows an unmeshed volume to be attached--
or grafted--onto a meshed volume. Grafting is particularly useful for models that have intersecting sweep directions (see
example below).

The command syntax for grafting is:

Graft {Surface <range> | Volume <id>} onto Volume <id> [no_refine] [no_smooth]
The Graft command will check that the second volume is meshed. It then searches for surfaces on the second volume
that overlap with the other volume or range of surfaces that is specified. If overlapping surfaces are found the mesh will

then be adjusted on the second volume and after any needed imprinting is done the overlapping surfaces will be merged
together.

557

CUBIT 11.0 User Documentation

Grafting Options

[no_refine]: This option tells grafting not to modify the connectivity of the original mesh. The mesh is still adjusted to fit
the boundary of the branch surface but no new elements are added.

[no_smooth]: This option tells grafting not to perform the final smoothing of the modified surface or volume mesh.

Grafting Scope

The following is a list describing the current scope and limitations of grafting:

Grafting only works on volumes meshed with hex elements.
The unmeshed branch surface cannot have any point outside the boundary of the meshed trunk surface.

Grafting may have difficulty with branch surfaces that are very thin with respect to the element size of the
meshed surface or that have sharp angles.

e |[f grafting fails some of the nodes of the original mesh may have been moved. Check the mesh quality and re-
smooth if needed.

Grafting Example

This example shows the four basic steps of grafting:

Partition the geometry (optional).

Mesh the trunk volume.

Graft the branch volume onto the trunk volume.
Mesh the branch volume.

N =

Step 1: Partition the geometry

Figure 1 shows the model that will be meshed. The arrows in the figure show the two intersecting sweep directions. Figure
2 shows the model decomposed for grafting.

ey

Figure 1. A model with two intersecting sweep directions.

558

CUBIT 11.0 User Documentation

Figure 2. The model decomposed for grafting
Step 2: Mesh the trunk volume.
Figure 3 shows the mesh of the trunk volume. At this point the mesh on the trunk surface adjacent to the branch surface is

a structured mesh that does not align with the boundary of the branch surface. The trunk and branch surfaces are two
separate surfaces.

Figure 3. Meshed trunk volume.

Step 3: Graft the branch onto the trunk

Figure 4 shows the trunk surface after it has been modified to fit the branch surface. At this point the two surfaces have
been merged together.

559

CUBIT 11.0 User Documentation

Figure 4. Trunk surface after grafting.
Step 4: Mesh the branch volume.

The final mesh is shown in Figure 5.

Figure 5. Final mesh

Optimize Jacobian

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Applies to: Volume meshes

Summary: Produces locally-uniform hex meshes by optimizing element Jacobians

560

CUBIT 11.0 User Documentation

Syntax:
Volume <range> Smooth Scheme Optimize Jacobian [param]
Discussion:

The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (i.e., volumes) attached to the smooth
node. Meshes smoothed by this means tend to have locally-uniform hex volumes.

The parameter <param> has a default value of 1, meaning that the method will attempt to make local volumes equal. The

parameter, which should always be between 1 and 2 (with 1.05 recommended), can be used to sacrifice local volume
equality in favor of moving towards meshes with all-positive Jacobians.

Randomize

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Applies to: Curve, Surface and Volume meshes
Summary: Randomizes the placement of nodes on a geometry entity
Syntax:
{Surface|Volume} <range> Smooth Scheme Randomize [percent]
Discussion:
This scheme will create non-smooth meshes. If a percent argument is given, this sets the amount by which nodes will be

moved as a percentage of the local edge length. The default value for percent is 0.40. This smooth scheme is primarily a
research scheme to help test other smooth schemes.

Refine Mesh Boundary

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}

Boundary effects to be modeled in the analysis code frequently require a refined mesh near a specific surface. CUBIT
provides this capability with the Refine Mesh Boundary command. This command is similar to the Refine Mesh Volume
Feature command except that it can insert multiple sheets of hexes near the specified surface.

Refine Mesh Boundary Surface <range> Volume <id> {bias <double>} {first_delta <double> |
thickness <double>} [layer <num_layers=1>] [SMOOTH|no_smooth]

With this command num_layers of hexes can be inserted at the first interval from the specified surface. A bias factor
indicating the change in element size must be specified. You must also indicate a first_delta or thickness which
represents the distance to the first inserted layer. The mesh in Figure 5 with bias 1.0 and first_delta of 5. The default
smooth option provides the capability to smooth the mesh following the refinement procedure.

561

CUBIT 11.0 User Documentation

Figure 5. Example of Boundary Surface Refinement

Sculpting
Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}

Applies to: Volumes

Summary: Grid based/Inside-Out research algorithm for generating all-hexahedral meshes for arbitrary 3D volumes. This
is an alpha feature and should be used with caution.

Syntax:
Volume <range> Scheme Sculpt
Related Commands:
Sculpt <volume_id_range> from <volume_id_range>
Discussion:
Sculpting takes a grid based approach to creating a volumetric mesh by
surrounding the meshing geometry with a structured grid, removing elements that lie outside the volume boundary from
the grid, manipulating the resulting stairstep mesh, and smoothing the exterior nodes to the volume boundary. The Sculpt

command can be used when a user desires to define there own bounding grid to build the volume mesh from. Multiple
volumes can define the user defined boundary grid. Currently Sculpting is still in stages of research and development.

562

CUBIT 11.0 User Documentation

= 5
T
'-m—_,______‘_hq_‘_
1—1 ™
T
L =1 th_""""\--.L
-‘th\-\-\'-\-‘r__ & J‘T\
[t B 2
- ""'--\.___“
2, |)
= N 4| |
[~y
™ =]
™]
1=
[
‘-\-L.h___ h""l-\._.
= "‘H
M T
[=--4 [t
x‘h"‘-«.‘_ "'\.‘__“
"'-.__‘ o)
""\.\‘_ [
.‘“"\-..
o)

Figure 1. Sculpted mesh of a dumbbell shape

Figure 2. Sculpted mesh of a mechanical part

Super Sizing Function

Note: This feature is under development. The command to enable or disable features under development is:

Set developer commands {on|OFF}

The Super sizing function computes both the Curvature and the Linear function and takes the smaller value of the two.
This is an alpha feature and should be used with caution. The following is an example of Super element sizing.

563

CUBIT 11.0 User Documentation

l‘!

ey
R

L
L
“1‘

o

—
"

S

e LA
Y
e

-

e

o

-

T

=
A
S

-'-'-. -

4

T
L
e

P

Figure 1. NURB mesh with super sizing function, 34 by 16 density

Test Sizing Function

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}

The Test sizing function is a hardwired numerical function used to demonstrate the transitional effect of sizing function-
based and adaptive paving. The function is a periodic function which is repeated in 50x50 unit intervals on a 2D surface in
the first quadrant (x > 0, y > 0, z = 0). This is an alpha feature and should be used with caution. An example of a surface
meshed with this sizing function is shown in Figure 1.

564

CUBIT 11.0 User Documentation

Figure 2. Test sizing function for square geometry

Transition

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Applies to: Surfaces

Summary: Produces a specified transition mesh for specific situations

565

CUBIT 11.0 User Documentation

Syntax:
Surface <range> Scheme Transition
{Triangle|Half_circle|Three_to_one|Two_to_one|Convex_corner|Four_to_two} [Source Curve
<id>] [Source Vertex <id>]

Discussion:

The transition scheme supplies a set of transition primitives which serve to transition a mesh from one density to another
across a given surface. The six transition sub-types are demonstrated here.

Scheme Transition Triangle creates four quads in a triangle
that has sides of three, two, and one intervals.

Scheme Transition Half_circle creates three intervals on the
flat and three on the curved part of the half-circle, then creates
four quads in the surface.

Scheme Transition Three_to_one creates four quads on a
rectangular surface that has intervals of three, one, one, and
one on its sides.

566

CUBIT 11.0 User Documentation

Scheme Transition Two_to_one creates three quads on a
rectangular surface that has intervals of two, two, one and one
on its sides :

Scheme Transition Convex_corner takes a six-sided block
with a convex corner and connects that inner corner to the
opposite one, creating two quads on the surface.

Scheme Transition Four_to_two creates seven quads on a
rectangular surface that has intervals of four, two, two, and two
on its sides.

The user also has the option of specifying a source curve and/or a source vertex. The rules for these specifications are as
follows

If both a curve and vertex are specified, the vertex must be on the curve.

The Convex_corner sub-type does not allow a source curve.

The Four_to_two sub-type does not allow a source vertex.

The source curve will be the curve that will be given the fewest intervals.

The source vertex will specify which corner will be used for the scheme, in cases where this makes sense
(primarily in the Triangle, and Two_to_one cases).

e If none of the optional information is given, the program will assign the source curve to be the shortest one on
the face, in keeping with the most probable

Triangle Mesh Coarsening

Note: This feature is under development. The command to enable or disable features under development is:

Set developer commands {on|OFF}

567

CUBIT 11.0 User Documentation

CUBIT provides the capability for coarsening triangle surface meshes. Triangle coarsening uses a technique known as
edge collapsing to coarsen a mesh. With this technique, triangle edges are selectively eliminated from the mesh until the
specified criteria have been met. The following commands will coarsen an existing triangle surface mesh:

Coarsen {Node|Edge|Tri} <range> {Factor|Size <double> [Bias <double>]} [Depth <int>|Radius
<double>] [Sizing Function] [no_smooth]

Coarsen {Vertex|Curve|Surface} <range> {Factor|Size<double> [Bias<double>]}
[Depth<int>|Radius<double>] [Sizing Function] [no_smooth]

Important: These commands are currently implemented only for triangle shaped elements.

To use these commands, first select mesh or geometric entities at which you would like to perform coarsening.
Coarsening operations will be applied to all mesh entities associated with or within proximity of the entities. The all
keyword may be used to uniformly coarsen all triangles in the model.

Following is a description of each of the coarsen options:

Factor

Defines the approximate size relative to the existing edge lengths for which the coarsening will be applied. For example, a
factor of 2 will attempt to make every edge length within the specified region approximately twice the size. A factor of 3 will

make everything three times the size. Valid input values for factor must be greater than 1. Figure 1 shows an example
where a coarsening factor of 2 was applied

Figure 1. Example of coarsening all triangles with a factor of 2.
Size, Bias

The Size and Bias options are useful when a specific element size is desired at a known location. This might be used for
locally coarsening around a vertex or curve. The Bias argument can be used with the Size option to define the rate at
which the element sizes will change to meet the existing element sizes on the model. Valid input values for Bias are
greater than 1.0 and represent the maximum change in element size from one element to the next. Since coarsening is a
discrete operation, the Size and Bias options can only approximate the desired input values. This may cause apparent
discontinuities in the element sizes. Using the default smooth option can lessen this effect. It should also be noted that the
Size option is exclusive of the Factor option. Either Factor or Size can be specified, but not both.

Depth

The Depth option permits the user to specify how many elements away from the specified entity will also be coarsened.
Default Depth is 1.

568

CUBIT 11.0 User Documentation

Figure 2. Coarsening performed at a node with factor = 3 and depth = 3

Radius

Instead of specifying the number of elements to describe how far to propagate the coarsening, a real Radius may be
entered.

Sizing Function

Coarsening may also be controlled by a sizing function. CUBIT uses sizing functions to control the local density of a
mesh. Various options for setting up a sizing function are provided, including importing scalar field data from an exodus
file. In order to use this option, a sizing function must first be specified on the surface on which the coarsening will be
applied. See Adaptive Meshing for a description of how to define a sizing function.

No_Smooth

The default mode for coarsening operations is to perform smoothing after coarsening the elements. This will generally

provide better quality elements. In some cases it may be necessary to retain the original node locations after coarsening.
The no_smooth option provides this capability.

Whisker Weave

Note: This feature is under development. The command to enable or disable features under development is:
Set developer commands {on|OFF}
Applies to: Volumes
Summary: Research algorithm for all-hexahedral meshing of arbitrary 3D volumes
Syntax:
Volume <range> Scheme Weave
Related Commands:
Pillow Volume <range>
{Volume|Surface|Curve} <range> Mesh [Fixed|Free]
Set AutoWeaveShrink [on|off]
Set Statelist [on|off]

Discussion:

569

CUBIT 11.0 User Documentation

Whisker Weaving (Tautges, 96; Tautges, 95; Folwell, 98) is a volume meshing algorithm currently being researched and
is not released for general use. However, daring users may find the current form of the algorithm useful for mostly-convex
geometries.

Whisker Weaving holds the promise of being able to fill arbitrary geometries with hexahedra that conform to a fixed
surface mesh. The algorithm is based on the rich information contained in the Spatial Twist Continuum (STC) (Murdoch
95), which is the grouping of the dual of an all-hexahedral mesh into an arrangement of surfaces called sheets. Given a
bounding quadrilateral surface mesh, Whisker Weaving constructs sheets advancing from the boundary inward. The
sheets are then modified so that the arrangement dualizes to a well defined hexahedral mesh. Once the primal hex-mesh
is generated, interior node positions are generated by smoothing.

Examples of meshes generated using the whisker weaving algorithm are shown in the following figure.

Figure 1. Some simple Whisker Weaving meshes with good quality

Whisker Weaving Basic Commands

The basic steps for meshing a volume with Whisker Weaving are the following:
Set the meshing scheme for the volume to weave

Volume <range> Scheme Weave
Mesh the volume, which generates hexes

Mesh Volume <range>

570

CUBIT 11.0 User Documentation

Pillow the volume to remove certain additional degenerate hexes
Pillow Volume <range>

and typically, smooth the mesh to improve quality, e.g.
Volume <range> Smooth Scheme Condition Number

Smooth Volume <range>

Whisker Weaving Options

Currently, Whisker Weaving relies on being able to perturb the bounding quadrilateral mesh. However, a bounding

surface's mesh will not be changed if it is contained in another volume that is already meshed.

The user may also explicitly prevent Whisker Weaving from changing a bounding mesh by fixing it with the following

command:

{Volume|Surface|Curve} <range> Mesh [Fixed|Free]

The user may select an optional control strategy that doesn't change the surface mesh by setting AutoWeaveShrink off,

and setting Statelist on with the following commands:
Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Numerous developer commands are available for stepping through the algorithm, examining results, and toggling options.

These are available via the command line help but are not detailed here.

Available Colors

All color commands in CUBIT require the specification of a color name. The following table lists the colors available in
CUBIT at this time. The table lists the color number (#), color name, and the red, green, and blue components
corresponding to each color, for reference.

Number

Color Name

black

grey

green

yellow

red

magenta

cyan

blue

white

Red

0.000

0.500

0.000

1.000

1.000

1.000

0.000

0.000

1.000

Green

0.000

0.500

1.000

1.000

0.000

0.000

1.000

0.000

1.000

Blue

0.000

0.500

0.000

0.000

0.000

1.000

1.000

1.000

1.000

571

CUBIT 11.0 User Documentation

9 orange 1.000 0.647 0.000
10 brown 0.647 0.165 0.165
11 gold 1.000 0.843 0.000
12 lightblue 0.678 0.847 0.902
13 lightgreen 0.000 0.800 0.000
14 salmon 0.980 0.502 0.447
15 coral 1.000 0.498 0.314
16 pink 1.000 0.753 0.796
17 purple 0.627 0.125 0.941
18 paleturquoise 0.686 0.933 0.933
19 lightsalmon 1.000 0.627 0.478
20 springgreen 0.000 1.000 0.498
21 slateblue 0.416 0.353 0.804
22 sienna 0.627 0.322 0.176
23 seagreen 0.180 0.545 0.341
24 deepskyblue 0.000 0.749 1.000
25 khaki 0.941 0.902 0.549
26 lightskyblue 0.529 0.808 0.980
27 turquoise 0.251 0.878 0.816
28 greenyellow 0.678 1.000 0.184
29 powderblue 0.690 0.878 0.902
30 mediumturquoise 0.282 0.820 0.800
31 skyblue 0.529 0.808 0.922
32 tomato 1.000 0.388 0.278
33 lightcyan 0.878 1.000 1.000

572

CUBIT 11.0 User Documentation

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

dodgerblue

aguamarine

lightgoldenrodyellow

darkgreen

lightcoral

mediumslateblue

lightseagreen

goldenrod

indianred

mediumspringgreen

darkturquoise

yellowgreen

chocolate

steelblue

burlywood

hotpink

saddlebrown

violet

tan

mediumseagreen

thistle

palegoldenrod

firebrick

palegreen

lightyellow

0.118

0.498

0.980

0.000

0.941

0.482

0.125

0.855

0.804

0.000

0.000

0.604

0.824

0.275

0.871

1.000

0.545

0.933

0.824

0.235

0.847

0.933

0.698

0.596

1.000

0.565

1.000

0.980

0.392

0.502

0.408

0.698

0.647

0.361

0.980

0.808

0.804

0.412

0.510

0.722

0.412

0.271

0.510

0.706

0.702

0.749

0.910

0.133

0.984

1.000

1.000

0.831

0.824

0.000

0.502

0.933

0.667

0.125

0.361

0.604

0.820

0.196

0.118

0.706

0.529

0.706

0.075

0.933

0.549

0.443

0.847

0.667

0.133

0.596

0.878

573

CUBIT 11.0 User Documentation

59 darksalmon 0.914 0.588 0.478
60 orangered 1.000 0.271 0.000
61 palevioletred 0.859 0.439 0.576
62 limegreen 0.196 0.804 0.196
63 mediumblue 0.000 0.000 0.804
64 blueviolet 0.541 0.169 0.886
65 deeppink 1.000 0.078 0.576
66 beige 0.961 0.961 0.863
67 royalblue 0.255 0.412 0.882
68 darkkhaki 0.741 0.718 0.420
69 lawngreen 0.486 0.988 0.000
70 lightgoldenrod 0.933 0.867 0.510
71 plum 0.867 0.627 0.867
72 sandybrown 0.957 0.643 0.376
73 lightslateblue 0.518 0.439 1.000
74 orchid 0.855 0.439 0.839
75 cadetblue 0.373 0.620 0.627
76 peru 0.804 0.522 0.247
7 olivedrab 0.420 0.557 0.137
78 mediumpurple 0.576 0.439 0.859
79 maroon 0.690 0.188 0.376
80 lightpink 1.000 0.714 0.757
81 darkslateblue 0.282 0.239 0.545
82 rosybrown 0.737 0.561 0.561
83 mediumvioletred 0.780 0.082 0.522

574

CUBIT 11.0 User Documentation

84 lightsteelblue 0.690 0.769 0.871

85 mediumaquamarine 0.400 0.804 0.667

Element Numbering

This appendix describes the element node and side numbering conventions used in Exodus Il files written by CUBIT. This
information is located here for convenience, but is identical to the information presented in the Exodus |l manual; citation
Schoof, 95

Node Numbering

The node numbering used for the basic elements is shown Figure 1. Specific element types of lower order just contain the
number of nodes needed for those elements; for example, QUAD4 or QUAD elements use just the first four nodes shown
for quadrilaterals in Figure 1.

Figure 1. Local Node Numbering for CUBIT element types

Side Numbering

Element sides are used to specify boundary conditions that act over a length or area, for example pressure- or flux-type
boundary conditions. Each element side is represented in the Exodus Il format by an element number and the local side
number for that element. The local side numbering for the basic elements is shown in Figure 2.

8 19 i

1

=

Figure 2. Local side numbering for CUBIT element types

575

CUBIT 11.0 User Documentation

Triangular Shell Element Numbering

A three-dimensional shell element with triangular topology will have the element type 'TRIANGLE'. This type can be
modified for different element orders by appending the number of nodes onto the end of the type. For example, a 6-node
shell could have the element type 'TRIANGLEG'. However, any element whose type begins with the 8 letters 'TRIANGLE'
in upper, lower, or mixed case will refer to an element with a triangular topology. The element can exist in either three-
space or two-space.

Attributes:
1. If the element exists in two-space, there are no required attributes.

2. If the element exists in three-space, there is one required attribute which is the thickness of the shell.
3. If the number of attributes is equal to the number of nodes in the connectivity of the element, then the attributes are

assumed to specify the thickness of the element at each of the elements nodes. The ordering of the attributes matches
the ordering of the elements nodes.

Node Ordering

The node ordering of the 3D triangle matches the node ordering of the 2D triangle as shown in Figure 3.

3

L
4

TRIAMNGLE

Figure 3. Local Node Numbering for CUBIT triangular element types

Side Set Side Ordering

The sideset side ordering is different for the element in the 2D and 3D instances.

In 2D, the sideset side ordering matches what is shown in Figure 4.

3

TRIAMGLE

Figure 4. Local sideset numbering for CUBIT triangular element types

In 3D, the sideset side and node ordering is the same as for a quad shell except that there are only 3 or 6 nodes.

576

CUBIT 11.0 User Documentation

Then:

side 1 =={1,2,3}
side 2 == {3,2,1}
side 3=={1,2}
side 4 == {2,3}
side 5 == {3,1}

If it is a higher order triangular shell (6 or 7 nodes), then the higher-order nodes are added on to the end of the above:

side 1 =={1,2,3,4,5,6,7}
side 2 =={3,2,1,6,5,4,7}
side 3 =={1,2,4}
side 4 == {2,3,5}
side 5 == {3,1,6}

FullHex vs. NodeHex Representation

CUBIT has two different internal representations of hexes: FullHexes and NodeHexes. The NodeHex is a lighter weight
data structure, but occasionally nodeset and sideset shortcomings can be overcome by using FullHexes. The user can
select which type of hexes get created when generating or importing a volume mesh with the following command:

Set FullHex [Use] [on|OFF]

Using the FullHex representation increases the memory used to store a mesh by a factor of approximately five.

APREPRO

APREPRO Syntax

APREPRO Rules

APREPRO Operators
APREPRO Predefined Variables
APREPRO Functions

Additional Functionality
APREPRO Journaling
APREPRO Units

Within CUBIT there is support for a programming language called APREPRO (An Algebraic Preprocessor for
Parameterizing Finite Element Analyses). Included here is a summary of the APREPRO functionality included within
CUBIT. This is a summary of the full APREPRO user's manual (PDF).

APREPRO Syntax

Within CUBIT, APREPRO expressions must be written inside of curly braces {}. For example, the following is a valid
CUBIT command:

Curve 1 Size {sqrt(2.0)}

e this will set the mesh size on curve 1 to 1.414214....(the square root of 2)

APREPRO expressions can also exist on separate lines as follows:

#{_numSeat=30}

e this will set the variable _numSeat to be equal to 30
® instead of a # you can use $ (i.e., ${_numSeat=30}

As in the example, separate line expressions must exist within commented lines. There is an exception though - looping
expressions must exist on non-commented lines. See Additional Functionality .

577

CUBIT 11.0 User Documentation

APREPRO Rules

The rules that APREPRO uses when identifying functions, variables, numbers, operators, delimiters, and expressions are
described below:

1. Functions

Function names are sequences of letters and digits and underscores (_) that begin with a letter. The function's arguments
are enclosed in parentheses. For example, in the line atan2(a,1.0), atan2 is the function name, and a and 1.0 are the
arguments. See APREPRO Functions for a list of the available functions and their arguments.

2. Variables

A variable is a name that references a numeric or string value. A variable is defined by giving it a name and assigning it a
value. For example, the expression a = 1.0 defines the variable a with the numeric value 1.0; the expression b="A
string" defines the variable b with the value "A string". Variable names are sequences of letters, digits, and underscores
() that begin with either a letter or an underscore. Variable names cannot match any function name and they are case-
sensitive, that is, abc_de and AbC_dE are two distinct variable names. A few variables are predefined, these are listed in
APREPRO Predefined Variables. Any variable that is not defined is equal to 0. A warning message is output to the
terminal if an undefined variable is used, or if a previously defined variable is redefined .

3. Numbers

Numbers can be integers like 1234, decimal numbers like 1.234, or in scientific notation like 1.234E-26. All numbers are
stored internally as floating point numbers.

4. Strings

Strings are sequences of numbers, characters, and symbols that are delimited by either single quotes ('this is a string’)
or double quotes ("this is another string"). Strings that are delimited by one type of quote can include the other type of
quote. For example, {'This is a valid "string"'}. Strings delimited by single quotes can span multiple lines; strings
delimited by double quotes must terminate on a single line or a parsing error message will be issued.

5. Operators

Operators are any of the symbols defined in APREPRO Operators. Examples are + (addition), - (subtraction), *
(multiplication), / (division), = (assignment), and ~ (exponentiation).

6. Delimiters

The delimiters recognized by APREPRO are: the comma (,) which separates arguments in function lists, the left curly
brace ({) which begins an expression, the right curly brace (}) which ends an expression, the left parenthesis (which
begins a function argument list, the right parenthesis) which ends a function argument list, the single quote (') which
delimits a multi-line string, and the double quote (") which delimits a single-line string.

7. Expressions

An expression consists of any combination of numeric and string constants, variables, operators, and functions. Four
types of expressions are recognized in APREPRO: algebraic, string, relational, and conditional.

8. Algebraic Expressions

Almost any valid FORTRAN or C algebraic expression can be recognized and evaluated by APREPRO. An expression of
the form a=b+10/37.5 will evaluate the expression on the right-hand-side of the equals sign and assign the value to the
variable a. An expression of the form b+10/37.5 will simply evaluate the expression. Variables can also be set on the
command line prior to playing any journal files using the 'var=val' syntax. Only a single expression is allowed within the { }
delimiters. For example, {x = sqrt(y"2 + sin(z))}, {x=y=z}, and {x=y} {a=z} are valid expressions, but {x=y a=z} is invalid
because it contains two expressions within a single set of delimiters.

578

CUBIT 11.0 User Documentation

9. String Expressions

APREPRO has very limited string support. The only supported operations are assigning a variable equal to a string (a =
"This is a string") or a function that returns a string, and concatenating two strings into another string (a = "Hello" // " " //
"World").

10. Relational Expressions

Relational expressions are expressions that return the result of comparing two expressions. A relational expression is
either true or false. Relational expressions can only be used on the left-hand side of a conditional expression. A relational
expression is simply two expressions of any kind separated by a relational operator. See Relational Operators.

11. Conditional Expressions

APREPRO recognizes a conditional expression of the form::

relational_expression ? true_exp : false_exp
where relational_expression can be any valid relational expression, and true_exp and false_exp are two algebraic
expressions. If the relational expression is true, then the result of true_exp is returned, otherwise the result of false_exp
is returned. For example, if the following command were entered:

#{a = (sind(20.0) > cosd(20.0) ? 1: -1)}
then, a would be assigned the value -1 since the relational expression to the left of the question mark is false. Both
true_exp and false_exp are always evaluated prior to valuating the relational expression. Therefore, you should not write
an equation such as

#{sind(20.0*a)>cosd(20.0*a) ? a=sind(20.0) : a=cosd(20.0)}

since the value of a can change during the evaluation of the expression. Instead, this equation should be written as:

#{a = (sind(20.0*a)>cosd(20.0*a) ? sind(20.0) : cosd(20.0))}

APREPRQO Operators

The operators recognized by APREPRO are listed below.

Arithmetic Operators
Assignment Operators
Relational Operators
Boolean Operators
String Operators

In the following table, the letters a and b can represent variables, numbers, functions, or expressions unless otherwise
noted. The tables below also list the precedence and associativity of the operators. Precedence defines the order in which
operations should be performed. For example, in the expression:

3*4+6/2
the multiplications and divisions are performed first, followed by the addition because multiplication and division have
higher precedence than addition. The precedence is listed from 1 to 14 with 1 being the lowest precedence and 14 being
the highest.
Associativity defines which side of the expressions should be simplified first. For example the expression: 3 + 4 + 5 would

be evaluated as (3 + 4) + 5 for left associativity, the expression a = b / ¢ would be evaluated as a = (b / c) for right
associativity.

579

CUBIT 11.0 User Documentation

1. Arithmetic Operators

Arithmetic operators combine two or more algebraic expressions into a single algebraic expression. These have obvious
meanings except for the pre- and post- increment and decrement operators. The pre-increment and pre-decrement
operators first increment or decrement the value of the variable and then return the value. For example, if a = 1, then
b=++a will set both b and a equal to 2. The post-increment and post-decrement operators first return the value of the
variable and then increment or decrement the variable. For example, if a = 1, then b=a++ will set b equal to 1 and a equal
to 2. The modulus operator % calculates the integer remainder. That is both expressions are truncated an integer value
and then the remainder calculated. See the fmod function in Mathematical Functions, for the calculation of the floating
point remainder. The tilde character ~ is used as a synonym for multiplication to improve the aesthetics of the APREPRO
unit conversion system (however, the unit conversions system is not supported in CUBIT). It is more natural for some
users to type 12~metre than 12*metre

Table 1. Arithmetic Operators

Syntax Description Precedence Associativity
at+b Addition 9 left
a-b Subtraction 9 left
a*b, a~b Multiplication 10 left
a/b Division 10 left
a"b, a**b Exponentiation 12 right
a%b Modulus (remainder) 10 left
++a, at++ Pre-, post-incerement 13 left
--a, a-- Pre-, post-decrement 13 left

2. Assignment Operators

Assignment operators combine a variable and an algebraic expression into a single algebraic expression, and also set the
variable equal to the algebraic expression. Only variables can be specified on the left-hand-side of the equal sign.

Table 2. Assignment Operators

Syntax Description Precedence Associativity

a=b The value of 'a' is set equal to 1 right
b

at+=b The value of 'a' is set equal to 2 right
a+b

a-=b The value of 'a' is set equal to 2 right
a-b

at+=b The value of 'a' is set equal to 3 right
a*b

al=b The value of 'a’ is set equal to 3 right
alb

580

CUBIT 11.0 User Documentation

a’=b The value of 'a' is set equal to 4
a b

a**=b Trge value of 'a' is set equal to 4
a

3. Relational Operators

right

right

Relational operators combine two algebraic expressions into a single relational expression. Relational expressions and

operators can only be used before the question mark (?) in a conditional expression.

Table 3. Relational Operators

Syntax Description Precedence

a<b true if 'a’ is less than 'b’ 8

a>b true if 'a' is greater than 'b' 8

a<=b true if 'a’ is less than or 8
equal to 'b’

a<=b true if 'a’ is greater than or 8
equal to 'b’

a==b true if 'a' is equal to 'b' 8

al=b true if 'a' is not equal to 'b' 8

4. Boolean Operators

Associativity

left

left

left

left

left

left

Boolean operators combine one or more relational expressions into a single relational expression. If la and Ib are two

relational expressions, then:

Table 4. Boolean Operators

Syntax Description Precedence
la|| 1b true if either 'la’ or 'Ib' are true. 6
la && 1b true if both 'la" and 'lb' are 7
true.
la true if 'la’ is false. 11

5. String Operators

Associativity

left

left

left

The only supported string operator at this time is string concatenation, which is denoted by //. If a = "Hello" and b =

"World", then:

c=all""Ilb

sets ¢ equal to "Hello World". Concatenation has precedence 14 and left associativity. Also see String Functions

581

CUBIT 11.0 User Documentation

APREPRO Predefined Variables

A few commonly used variables are predefined in APREPRO. These are listed below. The default output format is
specified as a C language format string, see your C language documentation for more information. The default format and
comment variables are defined with a leading underscore in their name so they can be redefined without generating an
error message.

Table 1. Predefined Variables

Name Value Description
PI 3.14159265358979323846 pi
PI_2 1.57079632679489661923 pi/2
SQRT2 1.41421356237309504880 ﬁ
DEG 57.2957795130823208768 180 /pl degrees per radian
RAD 0.01745329251994329576 pi/180 radians per degree
E 2.71828182845904523536 base of natural logarithm
GAMMA 0.57721566490153286060 euler-mascheroni constant*
PHI 1.61803398874989484820 golden ratio (\,E R
VERSION Varies, string value current version of CUBIT
_ FORMAT "%.10g" default output format

C "#" default comment character

1 The euler-mascheroni constant is defined as the limit of 1 + 1/2 + ... + 1/s - log(s) as s approaches infinity.

Note that the output format is used to output both integers and floating point numbers. Therefore, it should use the %g
format descriptor which will use either the decimal (%d), exponential (%e), or float (%f) format, whichever is shorter, with
insignificant zeros suppressed. The table below illustrates the effect of different format specifications on the output of the
variable Pl and the value 1.0 . See the documentation of your C compiler for

Table 2. Effect of Various Output Format Specifications more information. For most cases, the default value is
sufficient.

Format Pl Output 1.0 Output

%.10g 3.141592654 1

%.10e 3.1415926536e+00 1.0000000000e+00
%.10f 3.1415926536 1.0000000000
%.10d 1413754136 0000000000

582

CUBIT 11.0 User Documentation

APREPRO Units

Cubit uses a unitless coordinate system. For example, the command brick x 10 creates a cube 10 units wide, but Cubit
does not know whether those 10 units are 10 inches, 10 meters, 10 microns or 10 miles. The Aprepro Units() function
facilitates the use of a unit system in Cubit's unitless environment.

The Aprepro Units(svar) function takes a single string parameter which identifies the desired unit system. If the specified
unit system is recognized, then a set of variables are defined to facilitate working in that unit system. Dimensions can be
multiplied by an appropriate unit variable to convert between various dimensions. For example, the statement #{Units("in-
Ibf-s")} defines variables useful when working in a coordinate system where one Cubit unit is one inch. The command
brick x {1*ft} will create a cube 12 units wide, and the command brick x {1*m} will create a cube 39.37 units wide, the
number of inches in 1 meter.

It is important to note that the Units() function does nothing more than define a set of useful variables. The function does
not change the dimensions of existing geometry, nor does it change the scale of geometry imported from a file. For
example, the following commands create two cubes, the first being 12 units wide and the second being 1 unit wide. The
first cube remains 12 units wide, even after the second call to the Units() function:

#Units("in-Ibf-s")}
brick x 1*ft
#HUnits("ft-Ibf-s")}
brick x 1*ft

The Units() function returns a zero-length string if it is successful. If the Units() function fails (usually because the specified
unit system was not recognized), a non-zero-length string containing an error message is returned.

The unit systems currently supported by the Units() function are: si, cgs, cgs-ev, shock, swap, ft-Ibf-s, ft-lom-s, in-lbf-s. For
each of these unit systems, the following variables are defined by the Units() function:

Table 1. String Variables

Name Value

Tout Base Time Unit

lout Base Length Unit
Aout Base Acceleration Unit
Mout Base Mass Unit

fout Base Force Unit

vout Base Velocity Unit
Vout Base Volume Unit
dout Base Density Unit
eout Base Energy Unit
Pout Base Power Unit

pout Base Pressure Unit
Tout Base Temperature Unit

583

CUBIT 11.0 User Documentation

Aout

Time Variables

sec
second
usec
microsecond
msec
millisecond
minute

hr

hour

day

yr

year
decade
century

Length Variables

m

meter
metre

cm
centimeter
centimetre
mm
millimeter
millimetre
um
micrometer
micrometre
km
kilometer
kilometre
ft

foot

mi

mile

yd

yard

in

inch

mil

Acceleration Variables

ga

Force Variables

584

newton
N

Base Angle Unit

CUBIT 11.0 User Documentation

dyne
Ibf

kip

kof

of

pdl
poundal
ounce

Mass Variables

kg
gram

g

Ibm
slug
Ibfs2pin

Velocity Variables

mps
fps
mph
ips
kph
kps

Volume Variables

liter
gal
gallon

Density Variables

gpce
kgpm3
Ibfs2pin4
Ibmpin3
Ibmpft3
slugpft3

Power Variables

w
watt
Hp

Energy Variables

joule
J
ftibf
Btu

585

CUBIT 11.0 User Documentation

erg
calorie
kwh
therm
tonTNT

Pressure Variables

Pa
pascal
MPa
GPa
bar
kbar
Mbar
psi

ksi

psf
atm
torr
mHg
mmHg
inHg
inH20
ftH20

Temperature Variables

degK
kelvin
degC
degF
degR
rankine
ev

Angular Variables

rad

rev
deg
degree
arcmin
arcsec
grade

APREPRO Functions

Several mathematical, CUBIT and string functions are implemented in APREPRO.

(] Mathematical Functions
e CUBIT Functions

e String Functions

586

CUBIT 11.0 User Documentation

To cause a function to be used, you enter the name of the function followed by a list of zero or more arguments in
parentheses. For example

sqgrt(min(a,b*3))
uses the two functions sqrt() and min(). The arguments a and b*3 are passed to min(). The result is then passed as an

argument to sqgrt(). The functions in APREPRO are listed below along with the number of arguments and a short
description of their effect.

1. Mathematical Functions

The following mathematical functions are available in APREPRO.

Table 1. Mathematical Functions

Syntax Description

abs(x) Calculates the absolute value of x. |x|

acos(x) Calculates the inverse cosine of x, returns radians
acosd(x) Calculates the inverse cosine of x, returns degrees
acosh(x) Calculates the inverse hyperbolic cosine of x

asin(x) Calculates the inverse sine of x, returns radians
asind(x) Calculates the inverse sine of x, returns degrees
asinh(x) Calculates the inverse hyperbolic sine of x

atan(x) Calculates the inverse tangent of x, returns radians
atan2(y,x) Calculates the inverse tangent of y/x, returns radians
atan2d(x) Calculates the inverse tangent of x, returns degrees
atand(y,x) Calculates the inverse tangent of y/x, returns degrees
atanh(x) Calculates the inverse hyperbolic tangent of x

ceil(x) Calculates the smallest integer not less than x
cos(x) Calculates the cosine of x, with x in radians

cosd(x) Calculates the cosine of x, with x in degrees

cosh(x) Calculates the hyperbolic cosine of x

d2r(x) Converts degrees to radians.

dim(x,y) Calculates x - min(x,y).

587

CUBIT 11.0 User Documentation

dist(X1,Y1, X2,Y2) Calculates distance from x1,y; t0 X2,Y>

exp(x) Calculates €* (Exponential)

floor(x) Calculates the largest integer not greater than x.
fmod(x,y) Calculates the floating-point remainder of x/y.
hypot(x,y) Calculates sqrt(x*+y?)

int(x), [x] Calculates the integer part of x truncated toward 0.
julday(mm, dd, yy) Calculates the Julian day corresponding to mm/dd/yy.
juldayhms (mm, dd, yy, Calculates the Julian day corresponding to mm/dd/yy at hh:mm:ss
hh, mm, ss)

lgamma(x) Calculates log(G(x))

In(x), log(x) Calculates the natural (base e) logarithm of x.
log1lp(x) Calculates log(1+x)

log10(x) Calculates the base 10 logarithm of x.

max(x,y) Calculates the maximum of x and y.

min(x,y) Calculates the minimum of x and y.

polarX(r,a) Calculates r " cos(a), a is in degrees

polarY(r,a) Calculates r " sin(a), a is in degrees

r2d(x) Converts radians to degrees.

rand(xl,xh) Calculates a random number between x| and xh.
sign(x,y) Calculates x " sgn(y)

sin(x) Calculates the sine of x, with x in radians.

sind(x) Calculates the sine of x, with x in degrees.

sinh(x) Calculates the hyperbolic sine of x

sqrt(x) Calculates the square root of x.

tan(x) Calculates the tangent of x, with x in radians.
tand(x) Calculates the tangent of x, with x in radians.

588

CUBIT 11.0 User Documentation

tanh(x)

Vangle(x1,y1, x2,y2)

Vangled(x1,yl, x2,y2)

Calculates the hyperbolic tangent of x.

Calculates the angle between the vector xii + yij and Xai + y,j . returns
radians.

Calculates the angle between the vector xii + yij and X2i + y,j . returns
degrees.

2. CUBIT Functions

The following CUBIT Functions are available:

Table 2. CUBIT Functions

Syntax

get_error_count()

set_error_count(val)

get_warning_count()

set_warning_count(val)

ld("type”)

IntNum(id)

IntSize(id)

Volume(id)

SurfaceArea(id)

Length(id)

Radius(id)

MinVolumeMeshQuality(id,
"metric")

Description

Gets the current error count in CUBIT

Sets the error count in CUBIT to given value

Gets the current warning count in CUBIT

Sets the warning count in CUBIT to value

Returns the ID of the entity most recently created with the specified
type. Acceptable types include: "body", "volume", "surface", "curve",
"vertex", "group”, "node”, "edge”, "quad”, "face", "tri", "hex", "tet", or
"pyramid".

Returns the number of intervals on a curve with the given id.

Returns the interval size on a curve with the given id.

Gets the geometric volume of the volume with the given id.

Returns the surface area of the surface with the given id.

Returns the length of the curve with the given id.

Returns the radius of the curve at its midpoint.

Returns the worst value of the specified element quality metric of all
elements in the volume with the given id.

Acceptable metrics include:
shape

aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian

relative size
scaled jacobian
shape and size
shear and size

589

CUBIT 11.0 User Documentation

MinSurfaceMeshQuality(id,
"metric")

MeshVolume(id)

HexVolume(id)

TetVolume(id)

FaceArea(id)

TriArea(id)

MeshSurfaceArea(id)

EdgelLength(id)

MeshLength(id)

Nx(id), Ny(id), Nz(id)

Vx(id), Vy(id), Vz(id)

NumInGrp("groupname")

NumEdgesOnCurve(id)

NumElemsOnSurface(id)

NumElemsInVolume(id)

590

shear
skew
stretch
taper

Returns the worst value of the specified element quality metric of all
elements on the given surface.

Acceptable metrics include:
shape

aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear

skew

stretch

taper

warpage

Returns the total volume of all mesh elements in the volume with the
given id. This will vary from the actual geometric volume since the
mesh approximates curved boundaries with linear mesh edges.

Returns the volume of the hex with the given id.

Returns the volume of the tet with the given id.

Returns the area of the face with the given id.

Returns the area of the tri with the given id.

Returns the total area of all triangle or quadrilateral elements on the
surface with the given id. This will vary from the geometric surface
area since the mesh approximates the boundary with linear mesh
edges.

Returns the length of the edge with the given id.

Gets the length of the meshed curve with the given id.

Gets the x, y or z coordinate of node with the given id.

Gets the x, y or z coordinate of vertex with the given id.

Returns the number of entities in the given group.

Returns the number of edges on the curve with the given id.

Returns the number of elements on the surface with the given id.

Returns the number of elements in the volume with the given id.

CUBIT 11.0 User Documentation

NumVolumes()
NumSurfaces()
NumCurves()

NumVertices()

NumVolsInPart(“part_name”)

PartinVol(id)

Sessionld()

3.String Functions

Returns the number of volumes in the model.

Returns the number of surfaces in the model.

Returns the number of curves in the model.

Returns the number of vertices in the model.

Returns the number of volumes assigned to the part with the
specified name.

Returns the name and instance number of the part that the volume
has been assigned to.

Returns a unique ID for each Cubit session.

A few useful string functions are available:

Table 3. String Functions

Syntax

tolower(svar)

toupper(svar)

tostring(x)

execute(svar)

rescan(svar)

getenv(svar)

Description

Translates all uppercase characters in svar to lowercase. It
modifies svar and returns the resulting string.

Translates all lowercase character in svar to uppercase. It modifies
svar and returns the resulting string.

Returns a string representation of the numerical varaible x. The
variable x is unchanged.

svar is parsed and executed as if it were a line read from the input
file. For example,

if svar ="b=sqrt(25.0)", then {execute(svar)}
returns the value 5 and sets b = 5. The expression svar is enclosed

in delimiters prior to being executed and it must be a valid
expression or an error message will be printed.

Similar to execute(svar), except that svar is not enclosed in
delimiters prior to being executed. For example,

if svar ="Create Vertex {1+5} {sqrt(5)} {sqrt(6)}", then
{rescan(svar)}

would print:
Create Vertex 6 2.236067977 2.449489743.
The difference between execute(svl) and rescan(sv2) is that sv1l

must be a valid expression, but sv2 can contain zero or more
expressions.

Returns a string containing the value of the environment variable
svar. If the environment variable is not defined, an empty string is

591

CUBIT 11.0 User Documentation

returned.

get_word(n,svar,del) Returns a string containing the nth word of svar. The words are
separated by one or more of the characters in the string variable del

word_count(svar,del) Returns the number of words in svar. Words are separated by one
or more of the characters in the string variable del

strtod(svar) Returns a double-precision floating-point number equal to the value
represented by the character string pointed to by svar.

PrintError(svar) Outputs the string svar to stderr.

error(svar) Outputs the string svar to stderr and then terminates the code with
an error exit status

Quote(svar) Returns the string svar, enclosed in double quotes.
Units(svar) Sets variables useful for working in a unit system. See APREPRO
Units.

The following example shows the use of some of the string functions.

#{t1 = "ATAN2"} {t2 ="(0, -1)"}

#{t3 = tolower(t1//t2)}

...The variable t3 is equal to the string atan2(0, -1)

#{execute(t3)}

.13 = 3.141592654

The result is the same as executing {atan2(0, -1)}
This is admittedly a very contrived example; however, it does illustrate the workings of several of the functions. In the first
example, an expression is constructed by concatenating two strings together and converting the resulting string to
lowercase. This string is then executed.
The following example uses the rescan function to illustrate a basic macro capability in APREPRO. The example creates
vertices in CUBIT equally spaced about the circumference of a 180 degree arc of radius 10. Note that the macro is 5 lines
long (3 of the lines start with #, with the exception of the looping constructs - the actual journal file for this would not
continue lines but would put each one on one long line).

#{num = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}

#{line = 'Create Vertex

{polarX(rad, (++num-1) * 180/nintv)}

{polarY(rad, (num-1)*180/nintv)}'}

{loop(nloop)}

#{rescan(line)}

{endloop}

Output:

Create Vertex 100

592

CUBIT 11.0 User Documentation

Create Vertex 9.510565163 3.090169944
Create Vertex 8.090169944 5.877852523
Create Vertex 5.877852523 8.090169944
Create Vertex 3.090169944 9.510565163
Create Vertex 6.123233765e-16 10

Create Vertex -3.090169944 9.510565163
Create Vertex -5.877852523 8.090169944
Create Vertex -8.090169944 5.877852523
Create Vertex -9.510565163 3.090169944
Create Vertex -10 1.224646753e-15

Note the loop construct to automatically repeat the rescan line. To modify this example to calculate the coordinates of 101
points rather than eleven, the only change necessary would be to set {nintv=100}.

APREPRO Additional Functionality

Additional APREPRO Functionality includes the following:

(] File Inclusion
(] Conditionals

(] Loops

1. File Inclusion

APREPRO can read input from multiple files using the include() and cinclude() functions. If a line of the form:
{include(" filename")}
{include(string_variable)}
is read, APREPRO will open and begin reading from the file filename. A string variable can be used as the argument
instead of a literal string value. When the end of the file is reached, it will be closed and APREPRO will continue reading
from the previous file. The difference between include and cinclude is that if filename does not exist, include will
terminate APREPRO with a fatal error, but cinclude will just write a warning message and continue with the current file.
The cinclude function can be thought of as a conditional include, that is, include the file if it exists. Multiple include files
are allowed and an included file can also include additional files. Approximately 16 levels of file inclusion can be used.

This option can be used to set variables globally in several files. For example, if two or more input files share common
points or dimensions, those dimensions can be set in one file that is included in the other files.

2. Conditionals

Portions of an input file can be conditionally processed through the use of the {Ifdef(variable)} or Ifndef(variable)}
constructs. The syntax is:

#Ifdef(variable)}

...Lines processed if 'variable' is not equal to 0

#{Else}

...Lines processed if 'variable' is equal to 0 or undefined

#Endif}

593

CUBIT 11.0 User Documentation

#{Ifndef(variable)}
...Lines processed if 'variable' is equal to 0 or undefined
#{Else}
...Lines processed if 'variable' is not equal to 0
#{Endif}
The {Else} is optional. Note that if variable is undefined, its value is equal to zero. Ifdef constructs can be nested up to

approximately 16 levels. A warning message will be printed if improper nesting is detected. Ifdef(variable)},
{Ifndef(variable)}, {Else}, and {Endif} are the only text parsed on a line. Text following these on the same line is ignored.

3. Loops

Repeated processing of a group of lines can be controlled with the {loop(control)}, {endloop} commands. The syntax is:
{loop(variable)}
...Process these lines 'variable' times
{endloop}

Loops can be nested. A numerical variable or constant must be specified as the loop control specifier. You currently
cannot use an algebraic expression such as {loop(3+5)}.

A loop may also be exited before running the specified number of times using a #{Break} statement. As soon as a
#{Break} statement is encountered, the loop is exited and the rest of the statements in the loop will not execute.
Additional iterations of the loop will not be executed either. For example, the following commands will create 3 bricks:
#{x=1}
#{Loop(10)}

brick x 1

#{If(x==2)}

#{Break}

#{EndIf}

#{x++}

brick x 1
#{EndLoop}
When a #{Break} statement executes, anything in the loop following the #{Break} statement will be skipped, including

the #{EndIf}. For this reason, a #{Break} statement not only exits the loop, but also terminates the most recent #{If}
statement exactly as #{EndIf} would do. #{Break} statements should not be used outside of #{If} statements.

APREPRO Journaling

When using APREPRO, statements can be echoed to a journal file. Do do so, use the following command:
Set aprepro [ON|off]
Simply typing aprepro without an argument will display the current aprepro journaling setting.
For example,
bri x {2*5.0}
is journaled as
brick x {2*5.0}
if aprepro journaling is ON, or
brick x 10

if aprepro journaling is off. The default is ON.

594

CUBIT 11.0 User Documentation

APREPRO Comments

Comments are also journaled. This is useful for documenting aprepro definitions and descriptions.

Comments on the same line as a command get split into two separate lines in the journal file.

Significant Figures

When journal aprepro is ON, numbers are journaled exactly as they are entered. The maximum number of significant

digits is determined by the command input.

When journal aprepro is off, numeric results of aprepro statements are journaled according to the maximum number of
significant digits hard-coded into CUBIT, using the value of DBL_DIG.

FASTQ

FASTQ is a program developed to create geometry and two-dimensional mesh. The user may choose to upload FASTQ
files and work with the files in an environment that accepts a limited number of FASTQ commands.

Table 1. FASTQ Commands Executable in Cubit
Syntax Description
set fastq on

Cubit is in FASTQ mode.

set fastq off Cubit exits FASTQ mode.

nine Mesh will be generated using nine-node quadrilateral elements.
eight Mesh will be generated using eight-node quadrilateral elements.
five Mesh will be generated using five-node quadrilateral elements.

import fastq " *.fsq "

Imports FASTQ files into Cubit.

Table 2. Brief List of Importable FASTQ Commands Supported in Cubit

Syntax

point <point_id> <x-coord> <y-coord> [<z-coord>]

line <line_id> str <begin_pt> <end_pt> 0 [interval]
[factor]

line <line_id> circ <begin_pt> <end_pt>
<center_pt> [interval] [factor]

Description

This creates a point at the specified coordinates
with the id given by the user. The z-coordinate is
optional because FASTQ is a two-dimensional
meshing tool.

This creates a straight line with the given beginning
and end points and an id is assigned to the line.
The interval option determines the number of
intervals or subdivisions of the line for mesh
generation. The factor option is the ratio of the
interval lengths as the intervals progress towards
the end point of the line. For example, if a factor of
2 is specified, each interval will be 2 times longer
than the interval before it. If a factor is not
specified, the default factor is 1.

The command creates a circular arc (or logarithmic
spiral) about a center point. The beginning and
ending points specify where to position the circular
arc. The third point in the command specifies the

595

CUBIT 11.0 User Documentation

line <line_id> cirm <begin_pt> <end_pt>
<center_pt> [interval] [factor]

line <line_id> cirr <begin_pt> <end_pt>
<center_pt> [interval] [factor]

line <line_id> para <begin_pt> <end_pt>
<center_pt> [interval] [factor]

line <line_id> corn <begin_pt> <end_pt>
<center_pt> [interval] [factor]

side <side_id> <list_of_lines>

region <region_id> <block_id>
<list_of_lines_or_sides>

barset <barset_id> <block_id> <inside>
<list_of lines>

interval <interval> <list_of_lines>

factor <factor> <list_of_lines>

poinbc <node_bc_id> <list_of_points>

596

center of the circular arc. Interval and factor are
defined in the explanation for the Line (STR)
Command.

The CIRM line is similar to the CIRC line. The
difference between the CIRM line and the CIRC
line is the function of the third point. The third point
on a CIRM line is between the beginning and end
points and becomes a part of the circular arc. The
arc will be drawn through all three points.

The command creates a circular arc. The
beginning and end points function the same as the
other commands to create a circular arc, but the
third point is used differently. The x value of the
third point will be used as the radius of the arc to
be created. If the x value is positive, the center
point is placed on the left of a straight line drawn
through the beginning and end points. If the x value
is negative, the center is placed on the right side of
the line.

This command creates the tip of a parabolic arc.
The third point is the peak of the parabola. The
beginning and end points must be equidistant from
the third point.

The command creates a corner formed by two line
segments. The first segment is created by
connecting the first and third points. The second
segment is created by connecting the third and
second points. The line segments can have their
interval size set as if the two lines were one.

This creates a group made up of the given lines
and assigns the id given by the user.

A region is a list of lines/sides that enclose an area
to be meshed. The region is formed from the list of
lines and/or sides; the region is given the id
specified by the user.

The basis for two and three node element
generation is the barset. The barset id is the
identifying number for the barset. The block id is
the id assigned to all elements in the barset. The
inside point is a point on the inside of all lines in the
barset. All lines specified at the end of the
command will be included in the barset.

This sets the number of intervals on a given line or
lines.

This command sets the ratio of the interval lengths
as the intervals progress towards the end point of
the line. For example, if a factor of 2 is specified,
each interval will be 2 times longer than the interval
before it. If a factor is not specified, the default
factor is 1.

This command attaches boundary conditions to the
nodes that are created at point locations.The first
number to be entered is the id of the flag. After that

CUBIT 11.0 User Documentation

a list of all points to be flagged is entered.

This command attaches boundary conditions to
nodes created along certain lines. The first number
entered is the id of the flag. Following the id, all
lines to be flagged should be entered.

linebc <node_bc_id> <list_of_lines>

This command attaches boundary conditions to all
nodes created on certain lines. The first number

sidebc <side_bc_id> <list_of_lines> entered is the id of the flag. All numbers entered
after that point are the ids of the sidesets included
in the flag.

The letters after the region id indicate the meshing
scheme. Schemes specify a meshing algorithm for
mesh generation is a regionThe letter 'm' indicates

scheme <region_id> {m|t|b|c|u} a general rectangle primitive, 't' indicates a triangle
primitive, 'b" indicates a transition primitive, ‘c'
indicates a semicircle primitive, and 'u’ indicates a
pentagon primitive.

Periodic Space Filling Models (Tile)

This appendix describes commands for producing good-quality meshes of models that tile space, such as polycrystalline
materials models. Such models are often referred to as "periodic”, but since that term already has a different meaning in
Cubit, the keyword "tile" is used instead. Meshes may be smoothed across periodic boundaries. Periodic boundary
conditions can be automatically set up, according to ALEGRA conventions (SAND99-2698).

Tile commands are alpha features and should be used with caution.

Initial setup

First import the model and merge the surfaces. Then mesh it with any method that will create meshes that match across
the tile (periodic) boundary, say with scheme polyhedron or sweep. Once the mesh is created, specify the "tile vectors",
which lets Cubit know that the nodes across the periodic boundaries are actually the same node:

Tile {x <period> | y <period> | z <period>}
[x <period>] [y <period>] [z <period>]

The 'period' you specify is actually the vector offset from one boundary to its match. Specify one tile command for each
coordinate axis that the model is periodic in. E.g.

Tilex 1
Tiley 1
Tilez1

You can see which nodes are matched to a given node by some combination of tile vectors with the following command:
Tile Debug Node <id>

If you later need to delete these tile vectors, use the following command:

Tile Off

Creating Nodesets

Once the tile vectors are specified, you can set up periodic boundary conditions that meet ALEGRA specifications. The
command is:

Tile Nodeset <start_id>

597

CUBIT 11.0 User Documentation

This will create a nodeset for all combinations of tile vectors that actually connect nodes. The nodesets created will be
reported to you. The nodesets will be consecutive starting with the given 'start_id', except that if there are no nodes for a
particular combination there will be no nodeset and the id space will have a hole. To delete these nodesets, use the

Tile Off

command rather than the usual commands to delete nodesets.

Smoothing

Once a mesh has been created and the tile vectors have been specified, you can smooth the mesh and keep the periodic
boundaries exactly offset by the tile vectors. Only hex meshes are currently supported. A variety of 3d smoothing
schemes are supported, including laplac, equipotential, untangle, and condition number.

Smooth Volume <volume_id_range> [Global [Float <dim>]]

Use "Global" if you are smoothing a collection of volumes. Use "float 3" if you want nodes on surfaces, curves, and
vertices to be able to move off of their geometric owner. Use "float 2" if you want just nodes on curves and vertices to be
able to move off of their owner (but stay on an owning surface). It is often useful to specify that some of the nodes are
fixed using the "node position fixed" command.

Example

make the geometry
#{brick_size=500}

brick wid {brick_size}

brick wid {brick_size}

body 2 move {brick_size} 0 0

brick wid {brick_size}

body 3 move {brick_size} {brick_size} O
brick wid {brick_size}

body 4 move 0 {brick_size} 0

brick wid {brick_size}

body 5 move 0 O {brick_size}

brick wid {brick_size}

body 6 move {brick_size} 0 {brick_size}
brick wid {brick_size}

body 7 move {brick_size} {brick_size} {brick_size}
brick wid {brick_size}

body 8 move 0 {brick_size} {brick_size}
merge all

mesh it
vol all int 3
mesh vol all

set the tiling vectors
tile x {brick_size*2}
tile y {brick_size*2}
tile z {brick_size*2}
tile debug node 256
tile debug node 245

set the tiling nodesets
tile nodeset

mess up the mesh quality

volume all smooth scheme randomize
smooth volume all

surface all smooth scheme randomize
smooth surface all

draw hex all

598

CUBIT 11.0 User Documentation

fix the mesh quality

node in volume all position fixed

node in surface all position free

volume all smooth scheme laplac

volume all smooth scheme untangle beta 0.08
smooth volume all global float 3

draw hex all

Troubleshooting Guide

If this happens...

CUBIT gives me an error when attempting to import an IGES or STEP file

The Windows version of CUBIT (Claro) crashes at startup or exhibits
strange behavior

CUBIT unexpectedly aborts while executing a command

My Problem is not listed here

Try This...

See Setting Up CUBIT for
STEP or IGES tools.

Try deleting the system
registry entry for Claro:

1. Start the Windows
registry editor by going to
Start->Run. Type in
"REGEDIT" (without the
quotes) in the Run
dialogue and hit OK.

2. Expand the tree
HKEY_CURRENT_USER-
>Software.

3. Click on Claro and hit
the "Delete" key.

4. Rerun Claro.

Warning - this removes all
customized settings in the
GUI (docking, user icons,
etc..).

While every effort has
been made to make
CUBIT bug-free,
occasional bugs may still
exist. To report a bug or
suggest improvements to
the program email cubit-
dev@sandia.gov. A
description of how to
reproduce the problem
along with any relevant
journal or input files will
assist the developers in
tracking down the error.

Corrected versions of
CUBIT are available on a
regular basis, so it may be
worthwhile to download
the latest version of
CUBIT prior to reporting
an error.

Check out the online
CUBIT Users Junkyard for
recent questions and

599

CUBIT 11.0 User Documentation

answers.

References

Attaway, Stephen W.; Mello, Frank J.; Heinstein, Martin W.; Swegle, Jeffrey W.; Ratner, Julie A.; Zadoks, Rick lan,
"PRONTO3D users' instructions: a transient dynamic code for nonlinear structural analysis," Sandia Report SAND 98-
1361 Sandia National Laboratories, Albuquerque, NM (1998)

Attaway S. W., unpublished, (1993)

Blacker, T. D., FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National Laboratories, (1988)

Blacker, Ted D. "An Adaptive Finite Element Technique Using Element Equilibrium and Paving", American Society of
Mechanical Engineers, Annual Meeting Dallas Texas, November 25-30, 1990, ASME, Nov 1990

Blacker, Ted D., "Paving: A New Approach To Automated Quadrilateral Mesh Generation", International Journal For
Numerical Methods in Engineering, John Wiley, Num 32, pp.811-847, 1991

Blacker T.D. and Meyers R.J,."Seams and Wedges in Plastering:A 3D Hexahedral Mesh Generation Algorithm",
Engineering with Computers, Springer Verlag, Vol 2, Num 9, pp.83-93, 1993

Brewer, M., L. Diachin, P. Knupp, T. Leurent, and D. Melander, "The Mesquite Mesh Quality Improvement Toolkit",
Proceedings, 12th International Meshing Roundtable, 2003

Butlin, Geoffrey and Clive Stops, "CAD Data Repair", 5th International Meshing Roundtable, pp.7-12, 1996

Clark Brett W., "Removing Small Features with Real Solid Modeling Operations”, Submitted to 16th International Meshing
Roundtable, 2007

Cook, W. A. and W. R. Oakes (1982) Mapping methods for generating threedimensional meshes, Computers In
Mechanical Engineering, CIME Research Supplement:67-72, August 1982

Folwell, Nathan T. and Scott A. Mitchell, "Reliable Whisker Weaving via Curve Contraction”, Proceedings, 7th
International Meshing Roundtable, Sandia National Lab, pp.365-378, October 1998

Freitag, Lori A. and Patrick M. Knupp , "Tetrahedral Element Shape Optimization via the Jacobian Determinant and
Condition Number", Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., pp.247-258,
October 1999

George, P.L., F. Hecht and E. Saltel, "Automatic Mesh Generator with Specified Boundary", Computer Methods in Applied
Mechanics and Engineering, Vol. 92, pp. 269-288, 1991

Hardwick, Mike, "DART System Analysis Presented to Simulation Sciences Seminar", June 28, 2005

Jones, R.E., QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088, Sandia National Laboratories,
(1974).

Knupp, Patrick M., "Next-Generation Sweep Tool: A Method For Generating All-Hex Meshes On Two-And-One-Half
Dimensional Geomtries", Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp.505-513, October
1998

Knupp, Patrick M., "Winslow Smoothing On Two-Dimensional Unstructured Meshes", Proceedings, 7th International
Meshing Roundtable, Sandia National Lab, pp.449-457, October 1998

Knupp, Patrick M., "Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-
Movement", Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A., pp.13-22, October 1999

Knupp, P., "Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated
Quantities, Part I, Int. J. Num. Meth. Engr.. 2000

Lovejoy, S. C. and R. G. Whirley, DYNA3D Example Problem Manual, UCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

600

CUBIT 11.0 User Documentation

Melander, Darryl J., Timothy J. Tautges, Steven E. Benzley "Generation of Multi-Million Element Meshes for Solid Model-
Based Geometries: The Dicer Algorithm" AMD-Vol. 220 Trends in Unstructured Mesh Generation, ASME, pp.131-135,
July 1997

Mezentsev, Andrey A., "Methods and Algorithms of Automated CAD Repair For Incremental Surface Meshing",
Proceedings, 8th International Meshing Roundtable, pp.299-309, 1999

Murdoch, Peter and Steven E. Benzley, "The Spatial Twist Continuum", Proceedings, 4th International Meshing
Roundtable, Sandia National Laboratories, pp.243-251, October 1995

Oddy, A., J. Goldak, M. McDill, and M. Bibby "A Distortion Metric for Isoparametric Finite Elements" Transactions of the
Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4, 1988.

Owen, Steven J. and David R. White, "Mesh-Based Geometry: A Systematic Approach to Constructing Geometry from the
Nodes and Elements of a Finite Element Mesh", 10th International Meshing Roundtable, Sandia National Laboratories,
pp. 83-96, October 2001

Owen, Steven J., Clark, B.W., Melander, D.J., Brewer, M.B., Shepherd, J.F., Merkley, K., Ernst, C., Morris, R., "An
Immersive Topology Environment for Meshing", Accepted to 16th International Meshing Roundtable, 2007

Parthasarathy V. N. et al, "A comparison of tetrahedron quality measures”, Finite Elem. Anal. Des., Vol 15, 1993, 255-
261.

Price, M.A. and C.G. Armstrong, "Hexahedral Mesh Generation by Medial Surface Subdivision: Part |, Solids With Convex
Edges, International Journal for Numerical Methods in Engineering, Vol. 38, No. 19, pp. 3335-3359, 1995

W. Quadros, V. Vyas, M. Brewer, S. Owen, and K. Shimada, “A Computational Framework for Generating Sizing Function
in Assembly Meshing”, Proceedings, 14 th International Meshing Roundtable, 2005

W. R. Quadros, K. Shimada, and S. J. Owen, “Skeleton-based computational method for the generation of a 3D finite
element mesh sizing function”, Engineering with Computers, Springer Verlag, Vol 20, Num 3, pp.249-264, 2004

W. R. Quadros, S. J. Owen, M. Brewer, and K. Shimada, “Finite Element Mesh Sizing for Surfaces using Skeleton”,
Proceedings, 13 th International Meshing Roundtable, 2004

Robinson, J., "CRE method of element testing and Jacobian shape parameters, Eng. Comput., Vol. 4 (1987).

Ruppert, Jim , "A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation". Technical Report UCB/CSD
92/694, University of California at Berkely, Berkely California (1992)

Scott, Michael A., Matthew N. Earp, Steven E. Benzley, and Michael B. Stephenson, "Adaptive Sweeping Techniques,"
Proceedings of the 14th International Meshing Roundtable, Springer, pp. 417-432, 2005.

Schoof, L. A.and Victor R. Yarberry, "EXODUS Il A Finite Element Data Model", SAND92-2137, Sandia National
Laboratories, (1995).

Sheffer, A., "Model simplification for meshing using face clustering”, Computer-Aided Design, Vol. 33, No. 13, pp. 925-
934(10), 2001

Staten, Matthew L., Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and Plastering: A New Idea for All
Hexahedral Mesh Generation", Proceedings, 14th International Meshing Roundtable, pp.399-416, 2005

Staten, Matthew L., Robert A. Kerr, Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and Plastering: Progress
Update", Proceedings, 15th International Meshing Roundtable, pp.469-486, 2006

Stimpson, CJ, Ernst, CD, Knupp, P, Pebay; P, and Thompson, D. "The Verdict Geometric Quality Library", Sandia Report
SAND2007-175, 2007

Tautges, Timothy J. and Scott A. Mitchell, "Whisker Weaving: Invalid Connectivity Resolution and Primal Construction
Algorithm", Proceedings, 4th International Meshing Roundtable, Sandia National Laboratories, pp.115-127, October 1995

Tautges, Timothy J., Ted Blacker, Scott A. Mitchell, "The Whisker Weaving Algorithm: A Connectivity-Based Method for
Constructing All-Hexahedral Finite Element Meshes", International Journal for Numerical Methods in Engineering, Wiley,
Vol 39, pp.3327-3349, 1996

Tautges, Timothy J., "The Common Geometry Module (CGM): A Generic, Extensible Geometry Interface", Proceedings,
9th International Meshing Roundtable, pp. 337-348, 2000

601

CUBIT 11.0 User Documentation

Tautges, Timothy J., "Automatic Detail Reduction for Mesh Generation Applications”, Proceedings, 10th International
Meshing Roundtable, pp.407-418, 2001

Taylor, L. M. and D. P. Flanagan, "Pronto 3D--A Three-Dimensional Transient Solid Dynamics Program", SAND87-1912,
Sandia National Laboratories, (1989).

Tipton ,R. E., "Grid Optimization by Equipotential Relaxation", unpublished, Lawrence Livermore National Laboratory,
(1990)

Walton, D. J. and D. S. Meek, "A Triangular G1 Patch from Boundary Curves," Computer-Aided Design, Vol. 28 No. 2 pp.
113-123 (1996)

Watson, David F. , "Computing the Delaunay Tesselation with Application to Voronoi Polytopes", The Computer Journal,
Vol 24(2) pp.167-172 (1981)

Wellman, Gerald W., "MAPVAR : a computer program to transfer solution data between finite element meshes", Sandia
Report SAND 99-0466 Sandia National Laboratories, Albuguerque, NM (1999)

White, David R. and Paul Kinney, "Redesign of the Paving Algorithm: Robustness Enhancements through Element by
Element Meshing", Proceedings, 6th International Meshing Roundtable, Sandia National Laboratories, pp.323-335,
October 1997

White, David R. and Sunil Saigal (2002) Improved Imprint and Merge for Conformal Meshing, Proceedings, 11th
International Meshing Roundtable, pp.285-296

White, David R. and Timothy J. Tautges, "Automatic Scheme Selection for Toolkit Hex Meshing", International Journal for
Numerical Methods in Engineering, Vol. 49, No. 1, pp. 127-144, 2000

Whiteley, M., D. White, S. Benzley and T. Blacker, "Two and Three-Quarter Dimensional Meshing Facilitators",
Engineering with Computers, Springer-Verlag, Vol 12, pp.155-167, December 1996

Yong Lu, Rajit Gadh, and Timothy J. Tautges, "Volume decomposition and feature recognition for hexahedral mesh
generation”, Proceedings, 8th International Meshing Roundtable, pp. 269-280, 1999

Credits

Manager

e Ted Blacker, Manager, Computational Modeling Sciences Department (Org. 1421), Sandia National
Laboratories

Project Board

e Principal Investigator: Steven J. Owen, Org. 1421
e SNL Support Manager: Kevin Pendley
e SNL Product Manager: Eric Pulling, Org. 2991, SNL

Research and Development

Computational Modeling Sciences Department, Org. 1421, Sandia National Laboratories,
Albuquerque, NM

Michael Borden
Michael Brewer
Byron W. Hanks
Robert A. Kerr
Darryl J. Melander
Steven J. Owen
Jason F. Shephard
Matthew L. Staten
Timothy J. Tautges

602

CUBIT 11.0 User Documentation

(] Brett W. Clark

Sandia Livermore California, Org. 8351

e Phillipe P. Pebay

Elemental Technologies Inc., American Fork, UT

Ray J. Meyers
Corey Ernst

Karl Merkley
Randy Morris
Corey McBride
Mark Richardson
Clinton Stimpson

Contractors

e Michael B. Stephenson, Provo, UT
e Kevin Pendley, Albuguerque, NM

Caterpillar Co., Peoria, IL

(] Ben Aga

e Sam Showman
® Steven R. Storm
(] Ramagy Yoeu

Brigham Young University, UT

e Steve Benzley (PI)
e Mark Dewey

e Adam Woodbury
. Michael Parrish

. Brian Caldwell

Carnegie Mellon University, PA

e Kenji Shimada (PI)
e Ved Vyas
(] Erick Johnson

Testing Staff

Kevin Pendley (Testing Lead), ETI, UT

Weston Losinski, Org. 1421, Sandia National Laboratories
Jenna Kallaher, Org. 1421, Sandia National Laboratories
Leslie Fortier, Org. 1421, Sandia National Laboratories

Documentation

e Sara Richards, Contractor, Champaign, IL
e Jenna Kallaher, Org. 1421, Sandia National Laboratories

603

CUBIT 11.0 User Documentation

Administrative Assistant

e Lydia Koch, Org. 1421, Sandia National Laboratories

Quick Reference

Geometry | File Import | Meshing | Genesis | Program | Entity Parsing | Groups | Graphics | Settings

The following is brief overview of some of the most used command-line CUBIT commands.
GEOMETRY
Primitives

Brick X <> [Y <> Z <>]

Cylinder Radius <> Height <>

Frustum Z <> Radius <> [Top <>]

Frustum Z <> Maj Rad <> Min Rad <>

Prism Z <> Sides <> Rad <> [Maj <> Min <>]
Pyramid Height <> Sides <> Radius <>
Sphere Rad <> [Xpos] [Ypos] [Zpos] [Inn <>]
Torus Major Rad <> Minor Rad <>

Booleans

Unite <> [With <>] [keep]
Subtract <> From <> [keep]
Intersect <> [With <>] [keep]

Transformations

Body <> [Copy] Move <dx> <dy> <dz>

Move {} <> location {} <> [except [X] [y] [z]]

Rotate {} <> About {x] y| z|<> <> <>} Angle <>

Rotate {} <> About Vert <> Vert <> Angle <>

Rotate {} <> About Nor Of Surf <> Angle <> Body <> [Copy] Scale <> Body <> [Copy] Reflect {X| y| z|< x> <y> <z>}

Decomposition

Webcut {} <> Pla Vert <> [Vert]<> [Vert]<> ()

Webcut {} <> Plane Surf <> ()

Webcut {} <> Plane {xpla| ypla| zpla} [offs <>]

Webcut {} <> Tool [Body] <>

Webcut {} <> With Sheet {Body| Surf} <>

Webcut {} <> With Sheet Ext Fr Surf <>

Webcut {} <> Cyl Rad <> Axis {X| y| z| Vert <> Vert <>| <x><y><z>} [cent]

Options: [Noimprint| Imprint(default)], [Nomerge(default)] Merge], [group_ results] Section {} <> {{ xpla| ypla| zpla} [offs
<>]} | Surf <>} [keep] [normal(default)| reverse]

FILE IMPORT

Import Acis ‘filename'

Export Acis ‘filename' [Body <>]

Import Mesh Geometry ‘filename' (options)
MESHING

Mesh {} <>
Delete Mesh {} <> [Propagate]

Intervals
{} <> Interval {<> | Hard | Soft | Default}

{} <> Size {<>| Auto}
Match Intervals {} <> [Ass Grou [Onl| Infea]] [Seed Cur <>] [Map| Pave]

604

CUBIT 11.0 User Documentation

Mesh schemes

{} <> Scheme ...

Curve: bias, copy, curvature, dice, equal, stretch

Surface: auto, circle, copy, dice, hole, map, mirror, pave, pentagon, gtri, submap, triprimitive, trimap, trimesh, tripave
Volume: auto, copy, dice, map, sphere, submap, sweep, tetmesh, tetprimitive, thex

Smooth {} <>

{} <> Smooth Scheme ...

Smooth schemes

Curves: laplacian, randomize
Surface: centroid area pull, equipotential, laplacian, condition number, randomize, untangle, winslow
Volume: equipotential, laplacian, condition number, untangle, randomize

GENESIS

Block <> {Group| Vol| Surf| Curv} <> [Remove]
SideSet <> {Group| Curve} <> [Remove]

NodeSet <> {} <> [Remove]

Export Genesis ‘filename’

Block <> Attribute <>

Block <> Element Type <type_>

Curves: bar[| 2| 3]| beam[| 2| 3]| truss][| 2| 3]
Surfaces: quad[| 4| 8| 9]| shell[| 4| 8] 9]] tri[| 3| 6] 7]
Volumes: hex[| 8| 20| 27]| pyr| tetra[| 4| 8] 10| 14] hexshell
SideSet <> Surf <> [Rem|[She][For| Rev| Both]]
SideSet <> Surf <> wrt Volume <>

Reset {Genesis | Nodesets | Sidesets | Blocks}

PROGRAM

Play ‘filename'
Record {' filename' | stop}
Logging {off|on file <'filename'> [resume]}
Reset
Reset Genesis
uit

ENTITY PARSING

Examples

Surface 1234to6by?2..

Curve all in Volume 2 ...

Draw Edge all in Hex 32

List Curve 1 to 50 except 24 6

Draw Sideset 12 3 Curve 3to 5 Hex2 4 6
GROUPS

Group <> {add| equals| remove| xor} {} <>
Group <> {inters| unite} grou <> with grou <>
Group <> subtract group <> from group <>
GRAPHICS

Default mouse buttons (command line)

B1 - rotate; B2 - zoom; B3 - pan
Control-B1: pick entity (In graph win: 0,1,2,3,4 - Pick vert, curv, surf, vol, body)

Shortcuts (focus in Graphics Window)

605

CUBIT 11.0 User Documentation

a Add to selection group

b Toggle Bounding Box on Click

¢ Clear "picked" Group

d Display 'picked’ group, make it the selection
e Echo ID of selection to command line

f Assign function to mouse button

g List geometry of selection

h Print help

i Toggle visibility of selection

j/k Move slicing plane down/up

| List current selection (as if you typed 'list ...")
m/n List picked group/selection contents

p Toggle Persistent Wireframe

g Quit Current Mode (Exit slicing if slicing)

r Remove from 'picked' Group

s Toggle save-mesh on slice move

u Toggle mouse circle visibility

v Reset view

w Toggle Wireframe on click

xly/z Slice along x/y/z-axis

Shift-Z Zoom on current selection

F1 Save view 1 Numbers: set what you're picking.
ESC Cancel current Action

Tab Next possible selection

Shift-Tab Previous possible selection

SETTINGS

Set Auto Sweep Scheme {Sw|Proj|Trans|Rot}
[set] Geometry Version <> (1400, 1500, 1600, 1700)
[set] Debug <index> {on|off}

[set] Debug <index> File <'filename'>

[set] Debug <index> Terminal

set Default Blocks {on|off|Volumes|Surfaces}
set Default Names {on|off}

[set] Echo [on|off]

set Fix Duplicate Names {on|off}

set FullHex [Use] [on|OFF]

[set] Info {on|off}

[set] Journal {on|off}

set Keep Invalid Mesh {on|off}

[set] Logging {off|on file <'filename'> [resume]}
set Match Intervals Rounding {on|off}

set Match Intervals Fast {on|off}

set Node Constraint [ON|off]

[set] Paver Smooth Meth { Def | Smooth Sch}
[set] Paver Linearsizing {offlon}

set Replacement character '.|_|@"

[set] Scheme Auto Fuzzy [Tolerance] <degrees>
set {source|target} surface pattern '<pattern>'
set {Corner|End} Angle <degrees>

set Corner Weight <value>

set Turn Weight <value>

set Interval Weight <value>

set Large Angle Weight <value>

[set] Diagnostic {on|off}

set Suffix character '.|_|@'

[set] Smooth Meth {laplacian | isoparametric}
[set] Project Smooth {on|off}

[set] Warning {on|off}

[set] Smooth Iterations {default|<value>}

[set] Smooth Tol <value> (Default = 0.05)

606

Index

Index

.cub 13
.sab 114
.sat 114
A
abaqus 343, 347
acceleration 583
accuracy 146
acis 115, 336
adaptive 311
advancing front 238, 259
align 137
align mesh 310
alpha commands 547
ambient intensity 81
angle
mesh quality 280, 281
perspective 79
units 583
angle 79
appendix 538
apply button 20
aprepro
conditional statement 593
file inclusion 593
functions 586
if statement 593
journal file 64
journaling 594
loops 593
operators 579
predefined variables 582
rules 578
syntax 577
units 583
variable 6
aprepro 577
arc 120, 121
arc span 227
area 108, 280, 281
aspect ratio 280, 281, 283, 284
assembly 40, 219, 221, 223
attributes
block 351
metadata 221
attributes 213, 217
autocenter 69
automatic forced sweepability 161
automatic geometry cleanup 161
automatic geometry decomposition 549
automatic scheme selection
vertex types 275
automatic scheme selection 275
automatic size assignment 227
autosmooth 250

607

CUBIT 11.0 User Documentation

axis 73, 83,101
B
background color 77
bar 350
batch 6
beam 350
bias 234, 291, 298
bitmap 82
blend surfaces 148, 383
block
attribute 351
curve 351
element type 351
surface 351
volume 351
block 351
body
align 137
auto heal 141
copy 137
cut 549
healer analyze 140
imprint 187
intersect 139
list 108
merge 188
move 137
reflect 139
rotate 138
scale 138
section 186
separate 186
split 164
subtract 139
unite 139
webcut 164
body 129
boolean
intersect 139
subtract 139
unite 139
boolean 139
border 83
boundary conditions 350
brick 134
bug reports 4
C
camera 79
cancel 15
cd command 11
centroid area pull 294
cgm 82
changing preferences 60
chop 165
circle 235
cleanup 140

608

clear 67
closestpt 191, 550
coarsening 304
cohesive element 361
coincident nodes 292
collapse
angle 198
curve 200
mesh edges 306
surface 201
collapse 198
colors 77,571
command 9
command line 9,11
command syntax 9
command window 53
comment 65
component 58
composite
curves 191
surfaces 191
composite 191
condition number 281, 283, 284, 295
conformal 381
control skew 291
copy
body 137
mesh 273
scale 138
scheme 273
copy 137
create
bottom-up 120
brick 134
curve 121
cylinder 134
frustum 135
primitives 133
pyramid 135
sphere 136
surface 124
torus 136
vertex 120
volume 129
create 119
credits 602
ctrl-c 15
cubit file 13
cubit file method 13
cubit_geom.save.g 13
cubit_geom.save.sat 13
CUBIT_OPT 9
cubit-dev
curvature
sizing function 322
curvature 235

Index

curve
bias 234
block 351
copy mesh 273
create 121
extending 159
extrude 124
intervals 230
list 108
nodeset 357
partitioning 193
sideset 357
split 171
tangent 205
trimming 159
vertex on 120
curve 121
customize 60, 63
cut
mesh 550
cut 549
cylinder 134
D
DART 219, 221, 223
data filters 88
debug 6
decomposition
automatic 549
geometry 164
partitioning 193
split periodic 186
web cutting 164
decomposition 164
defeaturing
compositing 191
detail suppression 547
surface removal 158
tweaking geometry 146
defeaturing 547
Delaunay 258
delete 218
density 550, 583
detail suppression 547
development requests 4
diagonal ratio 284
dialog
command 20
options 60
property editor 51
tree view 39, 40
dialog 20
dice 265
dimension 346
direction 99
display 67
distance 112
distortion 280, 281, 283, 284

distribution 3
draw
axis 101, 107
color table 77
detail 547
direction 99, 107
edge 86
entity 73
group 207
histogram 286
location 94, 107
location on curve 97, 107
nodeset 86, 357
normal 73
picked 90
plane 170
source and target 73
surface 73
draw 73
dualbias 234,291
duplicating 273
E
echo 110
edge collapse 306
element block 350, 351
element numbering 575
element types 225, 350
energy 583
enhancement requests 4
entity
curve 121
drawing 73
highlighting 73
labels 76
names 214
picking 90
selecting 35,90
selection mode 35
specification 86
surface 124
tree 40
vertex 120
virtual 190
visibility 79
volume 129
entity 120
environment
user settings 9
environment 5
equal 236
equipotential 294
examples
advanced tutorial 546
box beam 541
general comments 538
octant of sphere 540
simple geometry creation 539
thunderbird 543
examples 538
execute button 20

609

CUBIT 11.0 User Documentation

execution
command syntax 6
execution
exit 5
exodus coordinate frame 364
exodus file method
element numbering 575
exporting 345
file specification 365
importing 339
model title 363
sizing function 326
exodus file method 365
exodus Il 346
exotxt 346
expand 86
export
abaqus 347
acis 336
cubit file 13
exodus Il 346
facet 337
fluent 348
granite 337
ideas 345
iges 337
Is-dyna 348
nastran 345
patran 348
step 337
export 345
export 363
extend 159
extraneous 158
F
facets 71
factor 298
fastq
importing 330
fastq 6
feature size 550
features 1
field function 326
file
acis 336
exodus Il 363, 365
fastq 330
iges 337
initialization 8
input 6
journal 6, 64, 65
file 8
filename
step 337
filename 9
find surface overlap 143
finite element model definition 350

610

firmness
interval 226
scheme 275
firmness 226
flatquad 361
flatshade 71
flush 67
fonts 58
force 161, 386, 583
free elements 339
free mesh 338
from 69, 79
frustum 135
fullhex 577
fuzzy 275
G
geometric entities
curve 121
surface 124
vertex 120
virtual 190
volume 129
geometric entities 120
geometry
accuracy 146
analyzing 140
associativity 338, 343
attributes 213
boolean 139
bottom-up creation 120
clean up 140
coincident nodes 292
composite 191, 204
creation 119
debug 145
decomposition 164
delete 218, 327
diced mesh 265
exporting 336
face 327
graphics window 67
group 207
groups 206
healing 140
importing 329
lighting 81
merging 188
mesh 327
modification 140
partition 197, 204
primitives 133
suppression 547
tolerance 146
transformations 136
tweaking 146, 148, 152
validating 144
virtual 190
virtual geometry 204
visibility 79
geometry 114
get_warning_count 586

Index

grafting 557
granite 115
graphical user interface 15
graphics
camera 79
clear 67
colors 77
display 67
draw 73
facets 71
flush 67
hardcopy 82
highlight 73,83
labels 76
line width 83
mesh slicing 75
modes 71
no graphics option 6
pause 67
perspective 79
point size 83
point style 83
reset 83
selection 90
silhouette 83
text size 83
updating the display 67
viewing 69, 79
views 81
visibility 79
window 30, 67
window size 81
graphics 67
grid-based meshing 562
group
add 207
clean out 207
delete 207
geometry 207
graphical selection 208
mesh 207
operations 207
propagated hex 208
quality 213
remove 207
group 206
groups
xor 207
groups 206
H
hammer icon 3
hard interval 226
hardcopy 82
hardware platforms 3
healing
analyzing geometry 140
attributes 141
automatic 141
failure 142
healing 140
help 6, 11, 58

hiddenline 71
highlight 73,83
histogram 286, 288
history command 11
hole 236
htet 268
I
id input field 20
i-deas 343
idless journal file 66
ids 216
iges 337
import
abaqus 343
acis 329
cubit file 13
facets 333
fastq 330
free mesh 338
granite 335
ideas 343
iges 332
mesh 273
mesh geometry 339
patran 343
sizing function 326
step 330
import 363
imprint
mesh 196
imprint 187
info 110, 604
initialization file 6,8
input 363
input file 6
input window 53
inria 255
inside-out meshing 562
installation 3
interrupt 15
intersect 139
interval
assignment 226
automatic specification 227
explicit specification 227
firmness 226
matching 230
periodic 231
relative 231
interval 226
isoparameter 73
isoparametric 73
J
jacobian 281, 283, 284
journal file

611

CUBIT 11.0 User Documentation

APREPRO 594
automatic creation 65
creation and playback 64
editor 55
playback 64
recording 64
journal file 6
K
key icon 3
key press commands 36
L
label 76
laplacian smoothing 294
license 3,9
light intensity 81
lighting model 81
line width 83
listing information
environment 110
geometry 108
mesh 110
model summary 108
special entities 110
listing information 107
location 94
logging 110
Is command 11
Is-dyna 348
M
mailing lists 4
make solid 129
makefile 541
mapping 237
mass 583
material 221
mean ratio smoothing 296
measure command 112
measurement 112
menu 19, 23, 58
merging
examining merged entities 189
tolerance 189
using to verify geometry 190
merging 188
mesh
collapse element 306
copy 273, 274
creation 225, 306
deletion 306
import 338
interval 226
mirror 274
modification 292
procedure 278

612

quality 49, 279, 286, 288
scheme 231
tools 48
mesh 225
mesh based geometry
adaptive 273,311
algorithms 231
command 278
continue 278
cutting 550
deletion 327
density 311, 550
export 346
generation 225
import 339
interval assignment 226
menu 19
meshedit 306
preview 231
process 225
quality 279
remesh 278
scheme selection 275
schemes 231
sizing function 311
slicing 75
smoothing 292
transform coordinates 363
validity 310
visibility 79
mesh based geometry 117
metadata 219
metric 279
metric name
algebraic 286
allmetrics 286
robinson 286
traditional 286
metric name 286
middle mouse button 31, 35, 60
midplane 124
mirror 274
model axis 73, 83
morph smooth 273
mouse
right click 37
selecting entities with 35, 90
view navigation 31, 69
mouse 31
mouse 69
move 137
msc 255, 259
multisweep 250
N
name 214
narrow regions 164
navigation 31, 69
ncdump 346
negative Jacobians 297

Index

netcdf 346
new 13
next 64
node
coincident 292
fix position 292
nodehex 577
nodeset 357
numbering 575
repositioning 306
selection 90
node 306
nodeset
associativity 357
repositioning 306
size 83
smoothing 292
visibility 79
nodeset 357
normal 73, 205
notation 9
numbering 575
numeric 9
NuminGrp 586
@)
offset 121, 124, 129
open 13
openGL 58
optimize jacobian smoothing 560
options 60
output 363
output window 53
overlap 143
P
painters 71
pan 31, 68, 69
parallel 278
parse 94
part 219, 221, 223
partition
curves 193
surfaces 194
volumes 195
partition 193
patch 357
patran 343, 348
pause 15
pave
paver diagonal scale 238
paver grid cell 238
paver linear sizing 238
pave 238
pentagon 242

periodic 597
perspective 79
pick toolbar 35
picking 90
pict 82
pillow 569
pinpoint 243
playback 64
point 83
polygonfill 71
polyhedron 243
postscript 82
power 583
ppm 82
preselection 35
pressure 583
preview
direction 107
location 107
mesh 231
webcut plane 170
preview 107
preview 170
preview 231
primitive
brick 134
cylinder 134
frustum 135
prism 135
pyramid 135
sphere 136
torus 136
primitive 133
prism 135
problem reports 4
property editor 51
pwd 11
pyramid 135
qtri 269
quality
assessment 279
controlling skew 291
describe 279
groups 213
hexahedral 284
quadrilaterals 281
tetrahedral 283
tetrahedron 283
tools 49
triangles 280
quality 279
quick reference 604
quit 5

613

CUBIT 11.0 User Documentation

R
radialmesh 261
randomize 561
record 64
references 600
refine
mesh boundary 561
refine 298
reflect 139
regularize 143
relative size 280, 281, 283, 284
remesh 278
removal 142, 158
remove 204, 250
remove topology 155
replace mesh 265
repositioning nodes 38, 306
reset 5
respect tetmesh 255
restart 13
restore 13
resume 15
right click options 37
rotate 31, 68, 69, 138
rotation 138
S
save 13
save as 13
scale 138
scaled jacobian 280, 281, 283, 284
scheme
automatic selection 275
bias 234
circle 235
curvature 235
delaunay 259
dice 265
dualbias 234
equal 236
featuresize 550
firmness 275
grid-based 562
hole 236
htet 268
inside-out 562
mapping 237
mirror 274
multisweep 250
parallel 278
pave 238
pentagon 242
pinpoint 243
polyhedron 243
qtri 269
sculpt 562
selection 275

614

sphere 245
stransition 245
stretch 249
stride 249
submap 247
sweep 250
tetinria 255
tetmesh 255
tetmsc 255
tetprimitive 257
thex 270
transition 565
triadvance 259
tridelaunay 258
trimap 258
trimesh 259
trimsc 259
tripave 260
triprimitive 260
whisker weave 569
scheme 231
sculpting 562
section 186
selection 35, 86
separate 186
session control 5
set_warning_count 586
shape 280, 281, 283, 284
sideset 357
silhouette 83
simplify 155, 202
simulog 255
size
auto 227
feature 550
interval 227
line width 83
point 83
text 83
size 298
sizing function
bias 316
constant 321
curvature 322
exodus Il 326
field 326
interval 325
inverse 325
linear 323
super 563
test 564
sizing function 291, 311
skeleton sizing 312
skew 281, 284, 291
skew control 291
skinning 124
sliver surface 158
small curves 162, 377
small surfaces 163, 377
smart laplacian 295

Index

smooth scheme

condition number 295
untangle 297
smooth scheme 292
smoothing
centroid area pull 294
elliptic 297
equipotential 294
laplacian 294
optimize condition number 295
optimize jacobian 560
optimize untangle 297
randomize 561
winslow 297
smoothing 292
smoothshade 71
soft interval 226
solid model 6
sort 216
sphere 136
spline 121
split
automatic 164
body 164
curve 171
periodic 186
surface 164, 171
split 171
statelist 569
step 337
stop 15
stransition 245
stray 158
stretch 249, 281, 284
stride 249
string 9
sub-assembly 219
submap 247
subtract 139
suppression 547
surface
creation 124
normal 205
overlap 143
removal 158
split 171
surface 124
surface 129
sweep 124, 129, 250
sweep surface 129
syntax 9
T
tangent 205
taper 281, 284
temperature 583

tetdice 255
tetinria 255
tetmesh 255
tetmsc 255
tetprimitive 257
text size 83
thex 270
thicken 129
threshold 290
tile 597
time 583
title 363
toggle 9
tolerance 146
toolbars
pick 35
toolbars 57
torus, 136
tquad 272
transform 363
transformations
align 137
copy 137
mesh coordinates 363
move 137
reflect 139
rotate 138
scale 138
transformations 136
transition 565
transition map 245
translation 137
translators 345
triad 83
triadvance 259
triangle coarsening 567
triangle visibility 73
tridelaunay 258
trim 159
trimap 258
trimesh 259
tripave 260
triprimitive 260
troubleshooting 599
truehiddenline 71
tutorial
gui 409
non-gui 393
power tools 431
tutorial 392
tweak
curve 148
remove topology 155

615

CUBIT 11.0 User Documentation

surface 152 quality metrics 283, 284
vertex 146 units 583
tweak 146 volume 129
U W
unite 139 warning 6, 110
units 583 webcut
chop 165
unmerge 190 options 170
untangle 297 sweep 168
up command 69, 79 with arbitrary surface 167
with planar or cylindrical surface 165
usage 6 with tool body 167
user environment settings 6,9 webcut 164
vV where 64
validation 144 whisker weave 569
variable 6, 577 wmdow_ .
application 15
velocity 583 command 53
verify 190 control panel 19
: drop-down menu 58
version 336 entity tree 40
vertex 120 graphics 30, 67
. input 53
view 69, 75,79, 83 journal file editor 55
virtual geometry output 53
composite 191 property 51
deleting 204 query select 35
entities 190 toolbar 57
partition 193 window 15
virtual geometry 190 winslow smoothing 297
visibility wireframe 71
edge 79
face 79 workbook mode 58
hex 79 working directory 11
visibility 79
Z
volume
draw 73 zoom 68, 69
measurement 112
partitioning 195

616

	CUBIT 11.0 User Documentation
	Introduction
	Key Features
	Geometry Creation, Modification, and Healing
	Non-Manifold Topology
	Geometry Decomposition
	Mesh Generation
	Boundary Conditions
	Element Types
	Graphics Display Capabilities
	Graphical User Interface
	Command Line Interface

	How to Use This Manual
	Licensing, Distribution and Installation
	Hardware Requirements
	Trademark Notice
	CUBIT Mailing Lists
	Problem Reports and Enhancement Requests
	Environment Control
	Session Control
	Starting and Exiting a CUBIT Session
	Starting the Session
	Windows File Association
	Exiting the Session
	Resetting the Session
	Abort Handling

	Execution Command Syntax
	Initialization Files
	Environment Variables
	Command Syntax
	Command Line Help
	Environment Commands
	Working Directory
	File Manipulation
	CPU Time
	Comment
	History
	Error Logging
	Determining the CUBIT Version
	Echoing Commands
	Digits Displayed

	Saving and Restoring a Cubit Session
	CUBIT File Method
	New
	Open '<filename>'
	Save
	Import
	Export

	Interrupting Running Tasks
	Graphical User Interface
	CUBIT Application Window
	Context Sensitive Help in the GUI
	Customizing the Application Window
	Interrupting Running Tasks

	Command Panels
	Command Panel Functionality
	ID Input Entry Methods
	Right-Click Context Menu for ID Input Fields
	Value Fields
	Advancing Pickwidgets

	Command Panel Overview
	Graphics Window
	View Navigation in the GUI
	Rotations
	Zooming
	Panning

	Selecting Entities in the GUI
	Pre-Selection
	Polygon and Box Select

	Key Press Commands for the GUI
	Right Click Commands for the GUI Graphics Window
	
	With Entity Selected
	Without Entity Selected

	Repositioning Nodes in the GUI
	Power Tools
	Geometry Tree
	Drag and Drop
	Picked Group
	Right-Click Menu Functions

	Geometry Power Tools
	Geometry Analysis Tools
	Geometry Repair Tools
	Right Click Menu

	Meshing Tools
	Right Click Context Menu

	Mesh Quality Tools
	Mesh Quality Tool Buttons
	Right-Click Context Menu Items

	Property Editor
	Editing Entity Attributes from the Property Editor
	General Attributes
	Geometry Attributes
	Meshing Attributes
	Boundary Condition Attributes
	Metadata Attributes

	Command Line Workspace
	Command Window
	Entering Commands
	Repeating Commands
	Interrupting Running Tasks

	Error Window
	History Window
	Script Window
	Docking and Undocking the Input Window

	Journal File Editor
	Journal Editor Toolbar

	Toolbars
	File
	Display
	Select

	Drop Down Menus
	Cubit (Mac Only)
	File
	Edit
	View
	Display
	Tools
	Help

	Options Menu
	Custom Tools
	Display Preferences
	General Preferences
	Geometry Defaults
	History Preferences
	Cubit History Preferences

	Label Defaults
	Layout Preferences
	Cubit Layout Settings

	Mesh Defaults
	Mouse Settings
	Post Processor Settings
	Quality Defaults

	Creating Custom Toolbar Buttons
	Undo Button
	Limitations

	Command Recording and Playback
	Journal File Creation and Playback
	Recording a Session
	Replaying a Session

	Controlling Playback of Journal Files
	Automatic Journal File Creation
	Controlling Automatic Journal File Creation
	Recording Graphics Commands
	Recording Entity IDs and Names
	Recording APREPRO Commands
	Recording Errors

	Idless Journal Files
	Graphics Window Control
	Updating the Display
	Prevent Graphics From Updating

	Command Line View Navigation: Zoom, Pan and Rotate
	Rotation
	Panning
	Zooming

	Mouse Based View Navigation: Zoom, Pan and Rotate
	Changing the View Transformation Button Bindings
	Saving and Restoring Views

	Graphics Modes
	Truehiddenline Options
	Displaying Using the Element Facets
	Displaying Composite Surface Lines

	Drawing and Highlighting Entities
	Drawing Other Objects
	Displaying Entity Orientation
	Volume Sources and Targets
	Model Axis
	Surface Isoparameter Lines
	Surface Overlap
	Geometry Preview

	Mesh Visualization
	Notes on Mesh Slicing
	Mesh Slicing Command

	Entity Labels
	Colors
	Specifying Colors in Commands
	User-Defined Colors
	Assigning Colors

	Geometry and Mesh Entity Visibility
	Graphics Camera
	Changing Camera Attributes Directly

	Graphics Lighting Model
	Graphics Window Size and Position
	Using Multiple Windows

	Saving Graphics Views
	Hardcopy Output
	Screen Capture Programs

	Miscellaneous Graphics Options
	Silhouette Lines
	Line Width
	Highlight Line Width
	Text Size
	Point Size
	Graphics Status
	Graphics Scale
	Model Axis
	Corner Axis (Triad)
	Resetting the Graphics
	Shrink
	Facet Tolerance

	Entity Selection
	Command Line Entity Specification
	Types of Entity Range Input

	Extended Command Line Entity Specification
	Extended Parsing Syntax
	Keywords
	Functions
	Precedence

	Selecting Entities with the Mouse
	Entity Selection
	Query Selection
	Multiple Selected Entities
	Information About the Selection
	Picked Group
	Substituting Selection into Other Commands

	Location, Direction and Axis Specification
	Specifying a Location
	
	Position (XYZ values)
	Last Location Used in a Command
	Node or Vertex
	On a Curve
	On a Surface
	Center
	Extrema
	Fire Ray
	Between
	Move
	Swing
	Multiple Location Specification

	Previewing a Location

	Specifying a Location on a Curve or Curves
	
	Start, Midpoint, or End
	Fraction
	Distance
	{Close_To|At} Location
	Extrema
	Segment
	Crossing

	Previewing a Location on a Curve

	Specifying a Direction
	
	Vector (XYZ values)
	Last Direction Used
	X|Y|Z|Nx|Ny|Nz
	On Curve Tangent
	On Surface Normal
	From Location
	Rotate
	Cross
	Reverse

	Previewing a Direction

	Specifying an Axis
	
	Last
	Specify an origin and a vector
	Revolve an axis about an axis

	Previewing an Axis

	Specifying a Plane
	
	Location and Normal Vector
	Location and Two Vectors on the Plane
	Two Locations and Vector on the Plane
	Three Points on the Plane
	Plane defined by a Surface
	Plane Normal to a Curve
	Normal Vector and Coefficient
	Coordinate Plane
	Last Location Used

	Previewing a Plane

	Drawing a Location, Direction, or Axis
	Listing Information
	List Model Summary
	List Geometry
	List Mesh
	List Special Entities
	List Cubit Environment
	Message Output Settings
	Graphical Display Information
	Memory Usage Information

	Entity Measurement
	Measure Between
	Measure Small
	Measure Angle

	Geometry
	CUBIT Geometry Formats
	Setting the Geometry Kernel
	Terms
	Topology
	Bodies and Volumes
	Non-Manifold Topology

	ACIS Geometry Kernel
	Granite Geometry Kernel
	Limitations

	Mesh-Based Geometry
	Creating Mesh-Based Geometry Models
	Improving Mesh-Based Geometry Models for Meshing
	Meshing Mesh-Based Models
	Exporting Mesh-Based Geometry

	Geometry Creation
	Bottom-Up Geometry Creation
	Creating Vertices
	Creating Curves
	Creating Surfaces
	Creating Bodies
	Geometric Primitives
	General Notes

	Creating Bricks
	Creating Cylinders
	
	Creating Prisms
	Creating Frustrums
	Creating Pyramids
	
	Creating Spheres
	Creating Toruses
	
	Geometry Transforms
	Align Command
	Copy Command
	Move Command
	Moving Other Geometric Entities
	Moving Bodies Relative to Other Geometric Entities
	Moving Merged Entities
	Move Undo

	Scale Command
	Rotate Command
	Reflect Command
	Geometry Booleans
	Intersect
	Subtract
	Unite
	Geometry Cleanup and Defeaturing
	Healing
	Analyzing Geometry
	Healer Settings

	Healing Attributes
	Auto Healing
	Spline Removal
	What if Healing is Unsuccessful?
	Regularizing Geometry
	Finding Surface Overlap
	Facetted Representation
	Find Overlap Settings

	Validating Geometry
	Debugging Geometry
	Geometry Accuracy
	Tweaking Geometry
	Tweaking Vertices
	Tweaking a Vertex With a Chamfer
	Tweaking a Vertex With a Non-Equal Chamfer
	Tweaking a Vertex With a Fillet Radius

	Tweaking Curves
	Create a Chamfer or Fillet
	Tweaking a Curve Using an Offset Distance
	Removing a Curve
	Tweaking a Curve Using Target Surfaces, Curves, or Plane
	Tweaking a Pair of Curves to a Corner

	Tweaking Surfaces
	Tweaking a Surface Using an Offset
	Tweaking a Surface by Moving
	Tweaking Surfaces to Target Surfaces
	Removing a Surface
	Tweaking a Conical Surface

	Tweak Remove Topology
	
	Example

	Removing Geometric Features
	Removing Vertices
	Removing Surfaces
	Remove Sliver Surface

	Trimming and Extending Curves
	Trimming a Curve
	Extending a Curve

	Automatic Geometry Clean-up
	Automatic Forced Sweepability
	Automatic Small Curve Removal
	Automatic Small Surface Removal
	Automatic Surface Split
	Geometry Decomposition
	Web Cutting
	General Notes

	Chop Command
	Web Cutting with a Planar or Cylindrical Surface
	Coordinate Plane
	Planar Surface
	Plane from 3 Points
	Plane Normal to Curve
	Cylindrical Surface
	Previewing a Web Cut Plane

	Web Cutting with an Arbitrary Surface
	Web Cutting using a Tool or Sheet Body
	Web Cutting by Sweeping Curves or Surfaces
	Webcut by sweeping a surface along a trajectory
	Webcut by sweeping a surface about an axis
	Webcut by sweeping a curve(s) along a trajectory
	Webcut by sweeping a curve(s) about an axis

	Web Cutting Options
	Web Cutting Preview
	Preview a Webcutting Plane
	Preview a Web Cutting Cylinder

	Splitting Geometry
	Split Curve
	Split Surface
	Split Across
	Split Extend
	Split (Automatically)

	Split Periodic Surfaces
	Separating Multi-Volume Bodies
	Section Command
	Geometry Imprinting and Merging
	Imprinting Geometry
	Regular Imprinting
	Tolerant Imprinting
	Mesh-Based Imprinting

	Merging Geometry
	Merge geometry automatically
	Test for merging in a specified group of geometry
	Measure Vertex Coincidence
	Force merge specified geometry entities
	Preventing geometry from merging

	Examining Merged Entities
	Merge Tolerance
	Unmerging
	Using Geometry Merging to Verify Geometry
	Virtual Geometry
	Composite Geometry
	Composite Curves
	Composite Surfaces
	Controlling the Surface Evaluation Method for Composite Surfaces
	Composite Determination

	Partitioned Geometry
	Partitioned Curves
	Partitioned Surfaces
	Partitioning with Vertices and Nodes
	Partitioning with Hard Points
	Partitioning with Polylines

	Partitioning with Curves
	Partitioning with Mesh Edges
	Partitioning with Faces or Triangles

	Partitioned Volumes
	Using Mesh Intersections to Partition Surfaces
	Removing Partitions
	Collapse Geometry
	Collapse Angle
	Collapse Curve
	Collapse Surface
	Simplify Geometry
	Feature Angle
	Respecting Curves and Surfaces
	Respecting Imprints

	Deleting Virtual Geometry
	Removing Virtual Geometry
	Using The Delete Command With Composites
	Using the Delete Command With Partitions

	Geometry Orientation
	Adjusting Orientation

	Geometry Groups
	Basic Group Operations
	Geometry Groups
	Group Booleans
	Mesh Groups
	Deleting Groups
	Cleaning Out Groups

	Groups in Graphics
	Propagated Hex Groups
	Propagated Hex Group Starting on a Face
	Ending at a Surface
	Ending at a Face
	Number of Times
	Ending at a Surface with Multiple
	Ending at a Face with Multiple
	Number of Times with Multiple
	Ending at Face with Direction
	Ending at Surface with Direction
	Number of Times with Direction

	Propagated Hex Group Starting on a Surface
	Ending at a Surface
	Number of Times
	Ending at a Surface with Multiple
	Number of Times with Multiple
	Ending at Surface with Direction
	Number of Times with Direction

	Naming Convention for Propagated Hex Groups
	Quality Groups
	Geometry Attributes
	Entity Names
	Valid and Invalid Names
	Reconciling Duplicate Names
	Automatic Name Creation
	Automatic Name Propagation
	Naming Merged Entities

	Entity IDs
	Gaps in ID space
	Renumbering IDs

	Persistent Attributes
	Attribute Behavior
	Attribute Types
	Attribute Commands
	Control By Attribute Type or Geometric Entity

	Using CUBIT Attributes
	Geometry Deletion
	Parts, Assemblies, and Metadata
	Overview of Parts, Assemblies and Metadata

	Working With Parts and Assemblies
	Identifying Parts and Assemblies
	Creating Parts and Assemblies
	Deleting Parts and Assemblies
	Associating Parts with Volumes
	Viewing All Assembly Information at Once

	Metadata Attributes
	Part and Assembly Metadata Attributes
	Viewing Part and Assembly Metadata Attribute Values
	Modifying Metadata Attributes
	Viewing and Modifying Global Metadata

	Importing and Exporting Metadata
	Importing Metadata
	Exporting Metadata
	Importing and Exporting DART Artifacts

	Mesh Generation
	Element Types
	Mesh Generation Process

	Interval Assignment
	Interval Firmness
	Precedence

	Explicit Specification of Intervals
	Automatic Specification of Intervals
	Default auto interval specification
	Maximum Spanning Angle on Arcs

	Interval Matching
	Periodic Intervals
	Relative Intervals
	Mesh Interval Preview
	Meshing Schemes
	Traditional Meshing Schemes
	Free Meshing Schemes
	Conversional Meshing Schemes
	Duplication Meshing Schemes
	General Meshing Information

	Bias Dualbias
	Circle
	Curvature
	Equal
	Hole
	Mapping
	Pave
	Element Shape Improvement
	Controlling Flattening of Elements
	Controlling the Grid Search for Intersection Checking
	Controlling the Paver Sizing Function
	Surface Vertex Types
	Surface Vertex Commands
	Listing and Drawing Vertex Types
	Triangle Vertex Types
	Adjusting the Automatic Vertex Type Selection Algorithm
	Volume Curve Types

	Pentagon
	Pinpoint
	Polyhedron
	Sphere
	STransition
	Submap
	Stretch
	Stride
	Sweep
	Multisweep
	Smoothing Swept Meshes
	Some helpful hints in using sweep
	Autosmooth
	Grouping Sweepable Volumes

	TetMesh
	Using tets as the basis of an unstructured hexahedral mesh
	Conforming the tetmesh to internal features

	Tetprimitive
	TriDelaunay
	TriMap
	TriMesh, TriAdvance
	TriPave
	TriPrimitive
	Radialmesh
	Dice
	Refining a Mesh with Dicing
	Detailed Discussion:
	Extended Dicing Commands

	Constraining Nodes to Geometry:
	Deleting a Fine Mesh
	Interaction with Dicer Sheets

	HTet
	Unstructured
	Structured

	QTri
	THex
	TQuad
	Copying a Mesh
	Mirroring a Mesh
	Automatic Scheme Selection
	Default Scheme Selection
	Auto Scheme Selection General Notes
	Scheme Firmness
	Surface Auto Scheme Selection
	Volume Auto Scheme Selection

	Parallel Meshing
	Meshing the Geometry
	Default Scheme and Interval Selection
	Remeshing a Volume
	Remeshing a Swept Volume Mesh

	Continuing Meshing After a Mesh Failure

	Mesh Quality Assessment
	Metrics for Triangular Elements
	Approximate Triangular Quality Definitions:
	Comments on Algebraic Quality Measures
	References for Triangular Quality Measures

	Metrics for Quadrilateral Elements
	Quadrilateral Quality Definitions
	Comments on Algebraic Quality Measures
	References for Quadrilateral Quality Measures
	Details on Robinson Metrics for Quadrilaterals

	Metrics for Tetrahedral Elements
	Tetrahedral Quality Definitions
	References for Tetrahedral Quality Measures

	Metrics for Hexahedral Elements
	Hexahedral Quality Definitions
	References for Hexahedral Quality Measures

	Mesh Quality Command Syntax
	Quality Options
	Scope
	Draw
	List
	Filter

	Mesh Quality Example Output
	Automatic Mesh Quality Assessment
	Controlling Mesh Quality
	Skew Control
	Propagate Curve Bias
	Adjust Boundary

	Coincident Node Check
	Mesh Modification
	Mesh Smoothing
	Centroid Area Pull
	Equipotential
	Laplacian
	Smart Laplacian
	Condition Number
	Mean Ratio
	Winslow
	Untangle
	Mesh Refinement
	Uniform Mesh Refinement
	Refining at a Geometric or Mesh Feature
	Hexahedral Refinement Using Sheet Insertion
	Refining at a Geometric Feature
	Refining along a path
	Refining a Hex Sheet
	Hex Sheet Drawing

	Mesh Coarsening
	Hexahedral Coarsening
	Extracting a Single Hex Sheet
	Extracting multiple sheets along a curve
	Uniform hex coarsening

	Collapsing Mesh Edges
	Node and Nodeset Repositioning
	Deleting, Creating and Merging Mesh Elements
	Deleting Mesh Elements
	Creating Mesh Elements
	Creating Hex and Tet Elements
	Creating Face and Tri Elements
	Creating Edge Elements
	Creating Nodes

	Merging Nodes

	Align Mesh
	Mesh Validity
	Mesh Adaptivity and Sizing Functions
	Adaptive Curve Meshing
	Adaptive Surface Meshing
	Adaptive Volume Meshing

	Geometry Adaptive Sizing Function (Skeleton Sizing)
	Skeleton Sizing Behaviors
	Command Line Syntax
	Basic Arguments
	Scaling and Accuracy Arguements:

	Advanced Arguments
	Lattice Arguments:
	Source Entity Arguments

	Skeleton with Other Sizing Controls
	Limitations

	Bias Sizing Function
	Constant Sizing Function
	Curvature Sizing Function
	Linear Sizing Function
	Interval Sizing Function
	Inverse Sizing Function
	Exodus II-based Field Function
	Curve Meshing with Exodus II - based Field Functions

	Mesh Deletion
	Importing and Exporting Files
	Importing Geometry
	Other Formats

	Importing ACIS Files
	Importing ACIS files at startup

	Importing FASTQ Files
	Importing STEP Files
	Exporting a STEP file from Pro/Engineer
	Setting Up CUBIT to Use STEP Tools

	Importing IGES Files
	Manifold Solid B-rep Objects (MSBO)

	Importing Facet Files
	Facet File Format
	Feature Angle
	Smooth Curves and Surfaces
	Merge
	Make elements
	Stitch
	Improve

	Importing Granite Files
	Exporting Geometry
	Exporting ACIS Files
	Exporting STEP Files
	Exporting IGES Files
	Exporting Granite Files
	Exporting Facet Files
	Importing a Mesh
	Importing 2D Exodus Files
	Importing Exodus II Files
	Mesh-Based Geometry
	File Name
	Blocks
	Start ID
	Nodesets/Sidesets
	Feature Angle
	Smooth Curves and Surfaces
	Apply Deformations
	Merge
	Merge Nodes
	Export Facets

	Importing Patran Files
	Importing I-DEAS Files
	Importing Abaqus Files
	Importing a Free Mesh
	Importing a Mesh with Nodeset Associativity
	Importing a Mesh onto Modified Geometry
	Mesh Import Tolerance
	Importing a Mesh without Geometry Associativity
	Specifying a Portion of the Mesh to be Imported
	Unique Genesis IDs and Shell Options

	Exporting the Finite Element Model
	Other Formats

	Exporting an Exodus II File
	Controlling Element and Node ID Maps
	Exporting a Parallel Mesh for pCAMAL
	Converting an Exodus II file to ASCII

	Exporting ABAQUS Files
	Exporting LS-DYNA Files
	Exporting Patran Neutral Files
	Exporting Fluent Grid Files
	Finite Element Model
	Finite Element Model Definitions
	Element Blocks
	Nodesets
	Sidesets
	Element Types

	Element Block Specification
	Creating Element Blocks
	Assigning a Name or Description to an Element Block
	Defining the Element Type
	Default Element Blocks
	Assigning Attributes to Blocks
	Displaying Element Blocks
	Deleting Element Blocks
	Automatically Assigning Mesh Edges to a Block (Rebar)
	Diagonal and Orthogonal Rebar Blocks
	Specifying a set of nodes

	Creating Beam Blocks (Spider)
	2D Elements

	Nodeset and Sideset Specification
	Creating Nodesets and Sidesets
	Assigning Names and Descriptions to Nodesets and Sidesets
	Grouping Faces on a Surface into a Sideset
	Deleting Nodesets and Sidesets
	Displaying Nodesets and Sidesets
	Nodeset Associativity Data
	Equation-Controlled Distribution Factors

	Cohesive Elements
	Multiple Curves in FLATQUAD Blocks

	Exodus II Model Title
	Transforming Mesh Coordinates
	Exodus Coordinate Frames
	Exodus II File Specification
	Exodus II Manual
	Element Block Definition Examples
	Multiple Element Blocks
	Surface Mesh Only
	Two-dimensional Mesh

	Immersive Topology Environment for Meshing (ITEM)
	Guiding the user through the workflow.
	Providing the user with smart options.
	Automating geometry and meshing tasks.

	How to Use the ITEM Wizard
	The ITEM Workflow
	Using an ITEM Panel
	Task panels that link to other ITEM panels
	Task Panels that Link to Control Panels
	Set-up Panels
	Diagnostic Panels

	Undo Button
	Magic Mesh Button
	Getting Help

	Defining the Geometric Model
	Setting up the Finite Element Model
	Clean Up the Geometry
	Bad geometry representation
	Detecting Invalid Geometry
	Resolving Invalid Geometry

	Small details in the model
	Small Curves
	Small and Narrow Surfaces

	Contact Surfaces
	Resolving Problems with Conformal Assemblies
	Resolving Misaligned Volumes
	Correcting Merge Problems

	Building a Sweepable Topology
	Blend Surfaces
	Geometry Decomposition
	Recognizing Nearly Sweepable Regions
	Forced Sweepability
	Generating a Mesh in ITEM
	ITEM Meshing Suggestions

	Validating the Mesh in ITEM
	Step-By-Step Tutorials
	Additional Tutorials

	Command Line Basic Tutorial
	Overview

	Command Line Basic Tutorial
	Step 1: Beginning Execution

	Command Line Basic Tutorial
	Step 2: Beginning Execution

	Command Line Basic Tutorial
	Step 3: Creating the Cylinder

	Command Line Basic Tutorial
	Step 4: Adjusting the Graphics Display
	Command Line
	Mouse

	Command Line Basic Tutorial
	Step 5: Forming the Hole

	Command Line Basic Tutorial
	Step 6: Setting Interval Sizes

	Command Line Basic Tutorial
	Step 7: Surface Meshing

	Command Line Basic Tutorial
	Step 8: Surface Meshing

	Command Line Basic Tutorial
	Step 9: Inspecting the Model

	Command Line Basic Tutorial
	Step 10: Defining Boundary Conditions

	Command Line Basic Tutorial
	Step 11: Exporting the Mesh

	GUI Basic Tutorial
	Overview

	GUI Basic Tutorial
	Step 1: Beginning Execution

	GUI Basic Tutorial
	Step 2: Creating the Brick

	GUI Basic Tutorial
	Step 3: Creating the Cylinder

	GUI Basic Tutorial
	Step 4: Adjusting the Graphics Display

	GUI Basic Tutorial
	Step 5: Forming the Hole

	GUI Basic Tutorial
	Step 6: Setting Interval Sizes

	GUI Basic Tutorial
	Step 7: Surface Meshing

	GUI Basic Tutorial
	Step 8: Volume Meshing

	GUI Basic Tutorial
	Step 9: Inspecting the Model

	GUI Basic Tutorial
	Step 10: Defining Boundary Conditions

	GUI Basic Tutorial
	Step 11: Exporting the Mesh

	Power Tools GUI Tutorial
	Overview

	Power Tools GUI Tutorial
	Step 1: Import the Geometry

	Power Tools GUI Tutorial
	Step 2: Analyze the Geometry

	Power Tools GUI Tutorial
	Step 3: Healing the Geometry

	Power Tools GUI Tutorial
	Step 4: Mesh Power Tools

	Power Tools GUI Tutorial
	Step 5: Splitting Filleted Surfaces

	Power Tools GUI Tutorial
	Step 6: Web Cutting

	Power Tools GUI Tutorial
	Step 7: Removing Small Surfaces

	Power Tools GUI Tutorial
	Step 8: Tweaking Surfaces

	Power Tools GUI Tutorial
	Step 9: Imprint/Merge

	Power Tools GUI Tutorial
	Step 10: Compositing Surfaces

	Power Tools GUI Tutorial
	Step 11: Meshing the Model

	Decomposition Tutorial
	Creating Sweepable Volumes Through Webcutting
	Why use sweeping?
	What makes a volume sweepable?
	Basic Sweep Groups
	Points to consider when determining whether a volume is sweepable
	Basic Sweep Paths

	What are some good strategies for decomposing my model?

	Example 1. Sweeping multiple adjacent volumes
	Suggested webcut
	Final mesh

	Example 2. Interlocking rings
	Suggested webcuts
	Final mesh

	Example 3. Webcutting using the sweep option
	Suggested webcuts
	Final mesh

	Example 4. Using the Loft command
	Suggested webcuts
	Final mesh

	Example 5. Multiple sweep directions
	Suggested webcuts
	Final mesh

	Example 7. Employing Symmetry
	Suggested webcuts
	Final mesh

	Example 8. Using virtual geometry in geometry decomposition
	Suggested webcuts
	Final mesh

	Example 9. Sweeping volumes with narrow angles and surfaces
	Suggested webcuts
	Final mesh

	Geometry Cleanup Process Flow
	�
	Appendix
	Examples
	General Comments
	Example:Simple Internal Geometry Generation
	Meshing with Autoscheme

	Example: Octant of a Sphere
	Example: Box Beam
	
	Block, Block Attribute
	NodeSet Move
	Merge

	Example: Thunderbird
	Example: Advanced Tutorial
	Alpha Commands
	Automatic Detail Suppression
	Example

	Automatic Geometry Decomposition
	FeatureSize
	Mesh Cutting
	
	Coordinate Plane
	Planar Surface
	Plane from 3 points
	Extended Surface

	Meshcut Options
	Meshcutting Scope
	Meshcutting Example

	Mesh Grafting
	Grafting Options
	Grafting Scope

	Optimize Jacobian
	Randomize
	Refine Mesh Boundary
	Sculpting
	Super Sizing Function
	Test Sizing Function
	Transition
	Triangle Mesh Coarsening
	Whisker Weave
	Whisker Weaving Basic Commands
	Whisker Weaving Options

	Available Colors
	Element Numbering
	Node Numbering
	Side Numbering
	Triangular Shell Element Numbering
	Node Ordering
	Side Set Side Ordering

	FullHex vs. NodeHex Representation
	APREPRO
	APREPRO Syntax
	APREPRO Rules
	1. Functions
	2. Variables
	3. Numbers
	4. Strings
	5. Operators
	6. Delimiters
	7. Expressions
	8. Algebraic Expressions
	9. String Expressions
	10. Relational Expressions
	11. Conditional Expressions

	APREPRO Operators
	1. Arithmetic Operators
	2. Assignment Operators
	3. Relational Operators
	4. Boolean Operators
	5. String Operators

	APREPRO Predefined Variables
	APREPRO Units
	APREPRO Functions
	1. Mathematical Functions
	2. CUBIT Functions
	3.String Functions

	APREPRO Additional Functionality
	1. File Inclusion
	2. Conditionals
	3. Loops

	APREPRO Journaling
	APREPRO Comments
	Significant Figures

	FASTQ
	Periodic Space Filling Models (Tile)
	Initial setup
	Creating Nodesets
	Smoothing
	Example

	Troubleshooting Guide
	References
	Credits
	Quick Reference
	Index

